Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a...Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury.展开更多
Rotator cuff(RC)attaches to humerus across a triphasic yet continuous tissue zones(bone-fibrocartilage-tendon),termed“enthesis”.Regrettably,rapid and functional enthesis regeneration is challenging after RC tear.The...Rotator cuff(RC)attaches to humerus across a triphasic yet continuous tissue zones(bone-fibrocartilage-tendon),termed“enthesis”.Regrettably,rapid and functional enthesis regeneration is challenging after RC tear.The existing grafts bioengineered for RC repair are insufficient,as they were engineered by a scaffold that did not mimic normal enthesis in morphology,composition,and tensile property,meanwhile cannot simultaneously stimulate the formation of bone-fibrocartilage-tendon tissues.Herein,an optimized decellularization approach based on a vacuum aspiration device(VAD)was developed to fabricate a book-shaped decellularized enthesis matrix(O-BDEM).Then,three recombinant growth factors(CBP-GFs)capable of binding collagen were synthesized by fusing a collagen-binding peptide(CBP)into the N-terminal of BMP-2,TGF-β3,or GDF-7,and zone-specifically tethered to the collagen of O-BDEM to fabricate a novel scaffold(CBP-GFs/O-BDEM)satisfying the above-mentioned requirements.After ensuring the low immunogenicity of CBP-GFs/O-BDEM by a novel single-cell mass cytometry in a mouse model,we interleaved urine-derived stem cell-sheets into this CBP-GFs/O-BDEM to bioengineer an enthesis-like graft.Its high-performance on regenerating enthesis was determined in a canine model.These findings indicate this CBP-GFs/O-BDEM may be an excellent scaffold for constructing enthesis-like graft to patch large/massive RC tears,and provide breakthroughs in fabricating graded interfacial tissue.展开更多
基金supported by the Natural Nature Science Foundation of China,Nos.82030071,81874004the Science and Technology Major Project of Changsha,No.kh2103008(all to JZH).
文摘Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury.
基金supported by the National Natural Science Foundation of China(Nos.81902192 and 81730068)the Science and Technology Major Project of Changsha(No.kh2003015)+1 种基金the Postdoctoral Science Foundation of China(No.2019M652809)Additionally,we thank the staffs at BL01B station of National Facility for Protein Science Shanghai and the BL15U1 station of the Shanghai Synchrotron Radiation Facility,Shanghai,China,for their kind assistance during the experiments.
文摘Rotator cuff(RC)attaches to humerus across a triphasic yet continuous tissue zones(bone-fibrocartilage-tendon),termed“enthesis”.Regrettably,rapid and functional enthesis regeneration is challenging after RC tear.The existing grafts bioengineered for RC repair are insufficient,as they were engineered by a scaffold that did not mimic normal enthesis in morphology,composition,and tensile property,meanwhile cannot simultaneously stimulate the formation of bone-fibrocartilage-tendon tissues.Herein,an optimized decellularization approach based on a vacuum aspiration device(VAD)was developed to fabricate a book-shaped decellularized enthesis matrix(O-BDEM).Then,three recombinant growth factors(CBP-GFs)capable of binding collagen were synthesized by fusing a collagen-binding peptide(CBP)into the N-terminal of BMP-2,TGF-β3,or GDF-7,and zone-specifically tethered to the collagen of O-BDEM to fabricate a novel scaffold(CBP-GFs/O-BDEM)satisfying the above-mentioned requirements.After ensuring the low immunogenicity of CBP-GFs/O-BDEM by a novel single-cell mass cytometry in a mouse model,we interleaved urine-derived stem cell-sheets into this CBP-GFs/O-BDEM to bioengineer an enthesis-like graft.Its high-performance on regenerating enthesis was determined in a canine model.These findings indicate this CBP-GFs/O-BDEM may be an excellent scaffold for constructing enthesis-like graft to patch large/massive RC tears,and provide breakthroughs in fabricating graded interfacial tissue.