期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hollow carbon microbox from acetylacetone as anode material for sodium-ion batteries 被引量:1
1
作者 Tianyun Qiu Wanwan Hong +7 位作者 Lin Li Yu Zhang Peng Cai Cheng Liu Jiayang Li Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期293-302,共10页
Carbon-based materials have attracted much interest as one of the promising anodes for sodium-ion batteries. However, low utilization of electrolyte and slow ion-transfer rate during electrochemical process hinder the... Carbon-based materials have attracted much interest as one of the promising anodes for sodium-ion batteries. However, low utilization of electrolyte and slow ion-transfer rate during electrochemical process hinder the further application of traditional bulk carbon. In order to enhance the diffusion kinetics and maintain the reversibility, hierarchical hollow carbon microbox was successfully prepared through a tunable bottom-up self-template routine for sodium-ion batteries. During annealing process, the morphology construction and activation happened synchronously. Based on that, a range of cross-linked porous nanosheet and hollow microbox were attained by manipulating reactant condition. The generation of texture and physical property are analyzed and are established linkages related to the electrochemical behavior. As results depicted in kinetic exploration and simulation based on cyclic voltammetry, the surfacecontrolled electrochemical behavior gradually turns to be the diffusion-controlled behavior as the hollow microbox evolves to porous nanosheet. The probable reason is that the rational microstructure/texture design leads to the accelerated diffusion kinetic procedure and the reduced concentration difference polarization. Sodium storage mechanism was deduced as reversible binding of Na-ions with local defects,including vacancies on sp2 graphitic layers, at the edges of flakes and other structural defects instead of intercalation. Bestowed by the morphology design, the broad pore width distribution, abundant defects/active sites and surface functionality, hollow microbox electrode delivers great electrochemical performances. This work is expected to propose a novel and effective strategy to prepare tunable hierarchical hollow carbon microbox and induce the fast kinetic of carbon anode material. 展开更多
关键词 Na-ion battery Carbon anode Hollow carbon Sodium storage Electrochemistry
下载PDF
Dual-function protective layer for highly reversible Zn anode
2
作者 Jiaming Li Hanhao Liang +6 位作者 Yini Long Xiao Yu Jiaqi Li Nan Li Junyi Han Jianglin Wang Zhanhong Yang 《Journal of Energy Chemistry》 SCIE EI CAS 2024年第11期12-23,共12页
The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based... The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries. 展开更多
关键词 Protection layer Zn-Al-In layered double oxide Captures and anchors SO_(4)^(2-) Zn-In alloy phase Zn metal anode
下载PDF
Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries 被引量:14
3
作者 Danyang Liu Li Yang +4 位作者 Zanyu Chen Guoqiang Zou Hongshuai Hou Jiugang Hu Xiaobo Ji 《Science Bulletin》 SCIE EI CAS CSCD 2020年第12期1003-1012,M0003,共11页
Antimony-based materials with high theoretical capacity are known as promising anodes for potassiumion batteries(PIBs). However, they still face challenges from the large ionic radius of the K ion, which has sluggish ... Antimony-based materials with high theoretical capacity are known as promising anodes for potassiumion batteries(PIBs). However, they still face challenges from the large ionic radius of the K ion, which has sluggish kinetics. Much effort is needed to exploit high-performance electrode materials to satisfy the reversible capacity of PIBs. In this paper, nano Sb confined in N-doped carbon fibers(Sb@CN nanofibers)were successfully prepared through an electrospinning method, which was designed to improve potassium storage performances. Sb@CN nanofibers benefit from the fact that the synergy between the porous nanofiber frame structure and the uniformly distributed Sb nano-components in the carbon matrix can effectively accelerate the ion migration rate and reduce the mechanical stress caused by K+insertion/extraction, Sb@CN nanofiber electrodes thus exhibited excellent potassium storage performance, especially long cycle stability, as expected. When utilized as a PIB anode, they delivered high reversible capacity of 360.2 m Ah g-1 after 200 cycles at 50 m A g-1, and a particularly stable capacity of 212.7 m Ah g-1 was also obtained after 1000 cycles even at 5000 m A g-1. Given such outstanding electrochemical performances,this work is expected to provide insight into the development and exploration of advanced alloy-type electrodes for PIBs. 展开更多
关键词 ELECTROSPINNING Sb@CN nanofibers Anode material Potassium-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部