Sedimentary basins such as Lake Baláta in Southwestern Hungary provide information about the development of lake-bog systems, the climate change through time and the environment of the surrounding area. The prese...Sedimentary basins such as Lake Baláta in Southwestern Hungary provide information about the development of lake-bog systems, the climate change through time and the environment of the surrounding area. The present study provides combined palynological, anthracological and macrobotanical data regarding climatic, vegetation and hydrological changes of a protected area for the last 3000 years. Lake Baláta is a sedimentary basin developed in a wind-blown yardang system in Southwestern Hungary. Due to its deeper location and the higher groundwater-level, the boggy lake functioned as a sediment catch. Geological drilling with an auger head drill provided an undisturbed sediment core. During the laboratory analysis different methods, such as sedimentological, geochemical, macrofossil, pollen and charcoal analysis were applied. The different stages and the evolution of the lake-bog system and the vegetation around the lake could be reconstructed and human impact was detected for the last 3000 years. Human impact and the transformation of vegetation was detected from the Early Iron Age (900/800 BC). Human impact reached its maximum during the 10th and 12th centuries when extent plant cultivation and grazing field zones were created. Climate change, increasing precipitation and consequently forest regeneration started in the 13th and 14th centuries. Parallel to this human impact decreased in the study area that indicates the reduction of the population and agrarian activity. Later at the beginning of the 15th century human impact increased again and remained significant until to the 16th century.展开更多
The Sirok Nyírjes-tó peat bog provides an almost full Holocene climatic record reconstructed by bog surface wetness investigations based on plant macrofossil analysis. We compared our macrofossil data to ant...The Sirok Nyírjes-tó peat bog provides an almost full Holocene climatic record reconstructed by bog surface wetness investigations based on plant macrofossil analysis. We compared our macrofossil data to anthracological material derived from archaeological sites and to the newest bioclimatological models of the Carpathian basin. On the basis of environmental historical and climatic data we aimed to reconstruct the expected changes of forested areas in the Carpathian Basin. The results indicate that the surface wetness decreases in long term. Parallel to the Sphagnum-peat decline an open forest and forest steppe developed surrounding the bog. The complete disappearance of Sphagna from the area must be linked to a steady drop in rainfall, resulting in at least 50 mm deficit in the local water balance. This could have been achieved by an increased evapotranspiration as a result of elevated temperatures of the summer growth season. This deficit value must have exceeded even 100 mm during the Middle Holocene Transition.展开更多
基金This study was carried out through project TAMOP-4.1.1 C-12/1/KONV-2012-0012Pál Sümegi’s research was supported by the European Union and the State of Hungaryco-financed by the European Social Fund in the framework of TAMOP-4.2.4.A/2-11/1-2012-0001“National Excellence Program”.
文摘Sedimentary basins such as Lake Baláta in Southwestern Hungary provide information about the development of lake-bog systems, the climate change through time and the environment of the surrounding area. The present study provides combined palynological, anthracological and macrobotanical data regarding climatic, vegetation and hydrological changes of a protected area for the last 3000 years. Lake Baláta is a sedimentary basin developed in a wind-blown yardang system in Southwestern Hungary. Due to its deeper location and the higher groundwater-level, the boggy lake functioned as a sediment catch. Geological drilling with an auger head drill provided an undisturbed sediment core. During the laboratory analysis different methods, such as sedimentological, geochemical, macrofossil, pollen and charcoal analysis were applied. The different stages and the evolution of the lake-bog system and the vegetation around the lake could be reconstructed and human impact was detected for the last 3000 years. Human impact and the transformation of vegetation was detected from the Early Iron Age (900/800 BC). Human impact reached its maximum during the 10th and 12th centuries when extent plant cultivation and grazing field zones were created. Climate change, increasing precipitation and consequently forest regeneration started in the 13th and 14th centuries. Parallel to this human impact decreased in the study area that indicates the reduction of the population and agrarian activity. Later at the beginning of the 15th century human impact increased again and remained significant until to the 16th century.
文摘The Sirok Nyírjes-tó peat bog provides an almost full Holocene climatic record reconstructed by bog surface wetness investigations based on plant macrofossil analysis. We compared our macrofossil data to anthracological material derived from archaeological sites and to the newest bioclimatological models of the Carpathian basin. On the basis of environmental historical and climatic data we aimed to reconstruct the expected changes of forested areas in the Carpathian Basin. The results indicate that the surface wetness decreases in long term. Parallel to the Sphagnum-peat decline an open forest and forest steppe developed surrounding the bog. The complete disappearance of Sphagna from the area must be linked to a steady drop in rainfall, resulting in at least 50 mm deficit in the local water balance. This could have been achieved by an increased evapotranspiration as a result of elevated temperatures of the summer growth season. This deficit value must have exceeded even 100 mm during the Middle Holocene Transition.