Compact nanophotonic elements exhibiting adaptable properties are essential components for the miniaturization of powerful optical technologies such as adaptive optics and spatial light modulators.While the larger cou...Compact nanophotonic elements exhibiting adaptable properties are essential components for the miniaturization of powerful optical technologies such as adaptive optics and spatial light modulators.While the larger counterparts typically rely on mechanical actuation,this can be undesirable in some cases on a microscopic scale due to inherent space restrictions.Here,we present a novel design concept for highly integrated active optical components that employs a combination of resonant plasmonic metasurfaces and the phase-change material Ge3Sb2Te6.In particular,we demonstrate beam switching and bifocal lensing,thus,paving the way for a plethora of active optical elements employing plasmonic metasurfaces,which follow the same design principles.展开更多
基金support by the ERC Advanced Grant(COMPLEXPLAS)BMBF(13N9048 and 13N10146)+3 种基金the Baden Württemberg Stiftung(Internationale Spitzenforschung II)DFG(SPP1391,FOR730 and GI 269/11-1)SFB 917(Resistive Nanoswitches)support by the Carl-Zeiss-Stiftung。
文摘Compact nanophotonic elements exhibiting adaptable properties are essential components for the miniaturization of powerful optical technologies such as adaptive optics and spatial light modulators.While the larger counterparts typically rely on mechanical actuation,this can be undesirable in some cases on a microscopic scale due to inherent space restrictions.Here,we present a novel design concept for highly integrated active optical components that employs a combination of resonant plasmonic metasurfaces and the phase-change material Ge3Sb2Te6.In particular,we demonstrate beam switching and bifocal lensing,thus,paving the way for a plethora of active optical elements employing plasmonic metasurfaces,which follow the same design principles.