Recent studies using BSIM3 models have suggested that noise depends on the transconductance-to-drain ratio gm/ID of a transistor. However, to the best of our knowledge, no experimental result demonstrating gm/ID depen...Recent studies using BSIM3 models have suggested that noise depends on the transconductance-to-drain ratio gm/ID of a transistor. However, to the best of our knowledge, no experimental result demonstrating gm/ID dependent noise previously observed in simulation is available in the literature. This paper examines the underlying principles that make it possible to analyze noise using gm/ID based noise analysis. Qualitative discussion of normalized noise is presented along with experimental results from a 130 nm CMOS process. A close examination of the experimental results reveals that the device noise is width independent from 1 Hz to 10 kHz. Moreover, noise increases as gm/ID is reduced. The experiment observation that noise is width independent makes it possible for circuit designers to generate normalized parameters that are used to study noise intuitively and accurately.展开更多
文摘Recent studies using BSIM3 models have suggested that noise depends on the transconductance-to-drain ratio gm/ID of a transistor. However, to the best of our knowledge, no experimental result demonstrating gm/ID dependent noise previously observed in simulation is available in the literature. This paper examines the underlying principles that make it possible to analyze noise using gm/ID based noise analysis. Qualitative discussion of normalized noise is presented along with experimental results from a 130 nm CMOS process. A close examination of the experimental results reveals that the device noise is width independent from 1 Hz to 10 kHz. Moreover, noise increases as gm/ID is reduced. The experiment observation that noise is width independent makes it possible for circuit designers to generate normalized parameters that are used to study noise intuitively and accurately.