期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于分布式边缘计算的情绪识别系统 被引量:3
1
作者 钱甜甜 张帆 《计算机科学》 CSCD 北大核心 2021年第S01期638-643,共6页
近年来,边缘计算和人工智能结合的模式越来越流行。面部动作单元(ActionUnit)检测分析是一种通过分析局部面部区域中某些原子肌肉运动的线索来识别面部表情的方法。根据面部特征点的检测,可以计算出AU的值,然后通过对这些AU值进行分类... 近年来,边缘计算和人工智能结合的模式越来越流行。面部动作单元(ActionUnit)检测分析是一种通过分析局部面部区域中某些原子肌肉运动的线索来识别面部表情的方法。根据面部特征点的检测,可以计算出AU的值,然后通过对这些AU值进行分类来进行实时情绪检测。然而,在实际的生产过程中,由于传输面部动作单元特征数据网络的开销巨大,这会给在生产中的通信网络带来新的挑战,因此可以选择使用树莓派,实验中设计了基于轻量级边缘计算的分布式系统,优化了数据传输和组件部署。将部分计算任务转移到服务器附近,前端和后端处理模式分开可以有效缩短往返延迟,从而完成复杂的计算任务,并提高可靠性,大规模连接服务。 展开更多
关键词 边缘计算 面部动作单元 树莓派 分布式计算 情绪识别
下载PDF
一种结合双注意力机制和层次网络结构的细碎农作物分类方法
2
作者 杨健楠 张帆 《计算机科学》 CSCD 北大核心 2022年第S01期353-357,618,共6页
细碎农作物由于单一样本的尺寸较小,单一样本之间具有一定的差异性,不能代表整个样本的特征,并且同种样本的不同等级在形状和颜色上非常相似,使得细碎农作物图像识别具有非常大的挑战性。目前,对干茶叶、大米、大豆等细碎农作物的图像... 细碎农作物由于单一样本的尺寸较小,单一样本之间具有一定的差异性,不能代表整个样本的特征,并且同种样本的不同等级在形状和颜色上非常相似,使得细碎农作物图像识别具有非常大的挑战性。目前,对干茶叶、大米、大豆等细碎农作物的图像分类方法的研究较为匮乏,并且研究数据集大多是在实验室环境下使用专业的设备进行拍摄的,这给实际应用带来了困难。为此,提出了一种使用手机对细碎农作物样本进行图像采集和处理的方案,并以茶叶和大米样本为例,设计了一种结合双注意力机制的层次网络结构,通过粗粒度-细粒度的分类过程,先进行粗粒度分类,即样本的不同类别,然后结合注意力机制,使网络更加关注同种类别下不同等级的样本之间的差异,从而更精确地对样本进行等级分类。最后,所提方法在采集的数据集上达到了93.9%的识别精度。 展开更多
关键词 细碎农作物 图像分类 层次网络结构 卷积神经网络 注意力机制
下载PDF
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
3
作者 徐鸣珂 张帆 《计算机科学》 CSCD 北大核心 2022年第7期132-141,共10页
语音情绪识别指使用机器从说话人的语音中识别说话人的情绪。语音情绪识别是人机交互的重要环节,但是目前的研究中仍然存在很多问题,例如,缺乏高质量的数据、模型准确性不足、在嘈杂的环境下进行的研究很少等。文中提出了一种基于多头... 语音情绪识别指使用机器从说话人的语音中识别说话人的情绪。语音情绪识别是人机交互的重要环节,但是目前的研究中仍然存在很多问题,例如,缺乏高质量的数据、模型准确性不足、在嘈杂的环境下进行的研究很少等。文中提出了一种基于多头注意力机制的Head Fusion方法,提高了语音情绪识别在相应数据集上的准确性。文中还实现了一个基于注意力的卷积神经网络模型,并在IEMOCAP数据集上进行了实验。语音情绪识别在该数据集上的准确度提高到76.18%(Weighted Accuracy,WA)和76.36%(Unweighted Accuracy,UA)。根据调研,该结果与该数据集上的最新结果(76.4%的WA和70.1%的UA)相比,在保持WA的同时提高了约6%的UA。此外,还使用了混入50种常见噪声的语音数据进行了实验,通过改变噪声强度、对噪声进行时域平移、混合不同的噪声类型,以识别它们对语音情绪识别(Speech Emotion Recognition)准确度的不同影响并验证模型的鲁棒性。文中还将帮助研究人员和工程师通过使用带有适当类型噪声的语音数据来增加其训练数据,从而缓解语音情绪识别研究中高质量数据不足的问题。 展开更多
关键词 语音情绪识别 注意力机制 卷积神经网络 噪声语音 语音识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部