Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also i...Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.展开更多
Zinc(Zn) ferti-fortification using different sources and methods in Zn deficient soils is being advocated to increase Zn concentration in rice kernel as an alternative to pursuing greater Zn-use efficiency(ZnUE). A tw...Zinc(Zn) ferti-fortification using different sources and methods in Zn deficient soils is being advocated to increase Zn concentration in rice kernel as an alternative to pursuing greater Zn-use efficiency(ZnUE). A two-year field study was conducted to assess the effect of Zn application on Zn content and uptake at several growth stages and in several parts of the rice kernel: hull, bran, and the white rice kernel. Variety ‘PB 1509' with 1.25 kg Zn ha^(-1) as Zn-EDTA + 0.5% foliar spray(FS) at maximum tillering(MT) and panicle initiation(PI) stages registered the highest Zn content in hull, bran, and white rice kernel. Among parts of the rice kernel, Zn concentration decreased in the order hull > bran > white rice kernel,indicating that brown rice kernels are much denser in Zn content than polished rice.Considering the higher Zn accumulation in the bran, brown rice consumption, especially in Asia and Africa, could be recommended to overcome Zn malnutrition. The variety ‘PB 1401'showed the highest Zn uptake in rice straw, while ‘PB 1509' showed the highest Zn uptake in hull and white rice kernel. Application of 1.25 kg Zn ha^(-1)(Zn-EDTA) + 0.5% FS at MT and PI and 2.5 kg Zn ha^(-1) ZnSO_4·7H_2O(ZnSHH) + 0.5% FS at MT and PI resulted in higher Zn uptake than other treatments. On average, about one third of total Zn uptake remained in the white rice kernel, with the remaining two thirds accumulating in both hull and bran of brown rice. Zn-EDTA along with 0.5% FS, despite the application of a lower quantity of Zn leading to the highest Zn mobilization efficiency index(ZnMEI) and Zn-induced nitrogen recovery efficiency(ZniNRE), produced the highest kernel yield. However, of the two Zn sources, Zn-EDTA contributed more to the increase in ZnUE than did ZnSHH.展开更多
The agriculture industry is undergoing a rapid digital transformation and is growing powerful by the pillars of cutting-edge approaches like artificial intelligence and allied technologies.At the core of artificial in...The agriculture industry is undergoing a rapid digital transformation and is growing powerful by the pillars of cutting-edge approaches like artificial intelligence and allied technologies.At the core of artificial intelligence,deep learning-based computer vision enables various agriculture activities to be performed automatically with utmost precision enabling smart agriculture into reality.Computer vision techniques,in conjunction with high-quality image acquisition using remote cameras,enable non-contact and efficient technology-driven solutions in agriculture.This review contributes to providing state-of-the-art computer vision technologies based on deep learning that can assist farmers in operations starting from land preparation to harvesting.Recent works in the area of computer vision were analyzed in this paper and categorized into(a)seed quality analysis,(b)soil analysis,(c)irrigation water management,(d)plant health analysis,(e)weed management(f)livestock management and(g)yield estimation.The paper also discusses recent trends in computer vision such as generative adversarial networks(GAN),vision transformers(ViT)and other popular deep learning architectures.Additionally,this study pinpoints the challenges in implementing the solutions in the farmer’s field in real-time.The overall finding indicates that convolutional neural networks are the corner stone of modern computer vision approaches and their various architectures provide high-quality solutions across various agriculture activities in terms of precision and accuracy.However,the success of the computer vision approach lies in building the model on a quality dataset and providing real-time solutions.展开更多
Exploration of novel genetic resources against root-knot nematode(RKN)is necessary to strengthen the resistance breeding program in cultivated rice,and investigations on the role of genotype-specific root anatomy in c...Exploration of novel genetic resources against root-knot nematode(RKN)is necessary to strengthen the resistance breeding program in cultivated rice,and investigations on the role of genotype-specific root anatomy in conferring a structural barrier against nematode invasion are largely underexplored.Here,we reported a highly-resistant rice germplasm Phule Radha that conferred remarkably lower RKN parasitic fitness in terms of reduced penetration and delayed development and reproduction when compared with susceptible cultivar PB1121.Using histological and biochemical analyses,we demonstrated that an enhanced suberin deposition in the exodermal root tip tissue of Phule Radha compared to PB1121 can effectively form a penetrative barrier against RKN infection,and this preformed barrier in the control tissue did not necessarily alter to a greater extent when challenged with RKN stress.Using qRT-PCR analysis,we showed that a number of suberin biosynthesis genes were greatly expressed in the exodermis of Phule Radha compared to PB1121.In sum,the present study established the role of rice exodermal barrier system in defense against an important soil-borne pathogen.展开更多
Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or l...Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.展开更多
The genus Musa is one of three genera in the family Musaceae, which includes bananas and plantains, which are monocotyledonous plants. Bananas have valuable nutritional content of vitamin C, B6, minerals, and dietary ...The genus Musa is one of three genera in the family Musaceae, which includes bananas and plantains, which are monocotyledonous plants. Bananas have valuable nutritional content of vitamin C, B6, minerals, and dietary fiber and are a rich food energy source, given that carbohydrates account for 22%–32% of fruit weight. Molecular markers are valuable for crop improvement and population genetics studies. The availability of whole-genome sequence and in silico approaches has revolutionized bulk marker discovery. We describe an online web genomic resource, BanSatDB(http://webtom.cabgrid.res.in/bansatdb/) having the highest number(>341,000) of putative STR markers from Musa genera so far, represented by three species: M. acuminata(110,000), M. balbisiana(107,000), and M. itinerans(124,000)from 11 chromosomes of each species. BanSatDB has also been populated with 580 validated STR markers from the published literature. It is based on a three-tier architecture using MySQL, PHP and Apache. The markers can be retrieved by use of multiple search parameters including chromosome number(s), microsatellite types(simple or compound),repeat nucleotides(1–6), copy number, microsatellite length, pattern of repeat motif, and chromosome location. These markers can be used for Distinctness, Uniformity and Stability(DUS) tests of variety identification and for marker assisted selection(MAS) in variety improvement and management. These STRs have also proved to be helpful in classification of Musa germplasm to distinguish individual accessions and in the development of a standardized procedure for genotyping. These markers can also be used in gene discovery and QTL mapping. The database represents a source of markers for developing and implementing new approaches for molecular breeding, which are required to enhance banana productivity.展开更多
von Willebrand factor A(vWA)genes are well characterized in humans except for few BONZAI genes,but the vWA genes are least explored in plants.Considering the novelty and vital role of vWA genes,this study aimed at cha...von Willebrand factor A(vWA)genes are well characterized in humans except for few BONZAI genes,but the vWA genes are least explored in plants.Considering the novelty and vital role of vWA genes,this study aimed at characterization of vWA superfamily in rice.Rice genome was found to have 40 vWA genes distributed across all the 12 chromosomes,and 20 of the 40 vWA genes were unique while the remaining shared large fragment similarities with each other,indicating gene duplication.In addition to vWA domain,vWA proteins possess other different motifs or domains,such as ubiquitin interacting motif in protein degradation pathway,and RING finger in protein-protein interaction.Expression analysis of vWA genes in available expression data suggested that they probably function in biotic and abiotic stress responses including hormonal response and signaling.The frequency of transposon elements in the entire 3K rice germplasm was negligible except for 9 vWA genes,indicating the importance of these genes in rice.Structural and functional diversities showed that the vWA genes in a blast-resistant rice variety Tetep had huge variations compared to blast-susceptible rice varieties HP2216 and Nipponbare.qRT-PCR analysis of vWA genes in Magnaporthe oryzae infected rice tissues indicated OsvWA9,OsvWA36,OsvWA37 and OsvWA18 as the optimal candidate genes for disease resistance.This is the first attempt to characterize vWA gene family in plant species.展开更多
Rice varieties having high Fe concentration in the endospermic region can be used as a good source for Fe deficit population.In this study,303 Oryza sativa varieties and 1 Oryza rufipogon accession were assessed for s...Rice varieties having high Fe concentration in the endospermic region can be used as a good source for Fe deficit population.In this study,303 Oryza sativa varieties and 1 Oryza rufipogon accession were assessed for spatial Fe accumulation in grains by Prussian blue staining method.Spatial ferritin protein distribution in grains was visualized by immunohistochemistry,and ferritin expression was assessed in selected rice varieties using semi-quantitative reverse transcription PCR.Three popular rice varieties,namely Sarjoo 52,Madhukar and Jalmagna,and the O.rufipogon variety showed Fe in all the regions of grains,and the highest Fe concentration was observed in the embryo region.Some high-yielding varieties like Swarna,Swarna Sub 1,CSR13 and NDRR359 had lower Fe concentration in the embryo region.The highest Fe concentration was detected in O.rufipogon(49.8μg/g),followed by Sarjoo 52(26.1μg/g)and Madhukar(25.7μg/g).Phytic acid concentration was the minimum in O.rufipogon(5.75 mg/g)followed by Sarjoo 52(5.83 mg/g).Western blot and semi-quantitative reverse transcription PCR showed higher expression of ferritin gene in O.rufipogon,Sarjoo 52 and Madhukar.In conclusion,O.rufipogon and Sarjoo 52 had higher Fe concentration in the embryo regions as well as endosperm and aleurone layer,whereas the other varieties had lower Fe concentration in the endosperm.Sarjoo 52 could be used as a donor in the rice breeding program for the generation of new varieties with elevated grain Fe concentration.展开更多
Bacterial wilt complex disease of tomato(Solanum lycopersicum L.)was incited jointly by bacterial wilt pathogen Ralstonia solanacearum and Meloidogyne incognita worldwide.Bio-efficacy of bacterial antagonists i.e.B.am...Bacterial wilt complex disease of tomato(Solanum lycopersicum L.)was incited jointly by bacterial wilt pathogen Ralstonia solanacearum and Meloidogyne incognita worldwide.Bio-efficacy of bacterial antagonists i.e.B.amyloliquefaciens DSBA-11 and P.fluorescens DTPF-3 was studied against the wilt disease complex in tomato at National Phytotran facility Indian Agricultural Research Institute(IARI),New Delhi,at 26±2°C.Minimum wilt disease incidence(26.00%)with the highest bio-control efficacy(64.15%),less juvenile population(19.33 J2/g of soil)of M.incognita was recorded in the combined application of DTPF-3+DSBA-11 after 30 d of inoculation under glasshouse conditions.In a field study,minimum bacterial wilt disease incidences 19.0%and 20.4%were recorded in the bleaching powder treatment followed by mixed application of DSBA-11+DTPF-3,19.6%and 21.2%wilt incidence in 2014 and 2015 respectively.However,a reduction of root-knot gall index was recorded a maximum of 59.76%and 69.62%in DSBA-11+DTPF-3 treated plants followed by 54.88%and 60.13%over control in DTPF-3 treatment in 2014 and 2015 respectively.The yield of tomato fruit was increased over control by 17.48%and 16.97%in 2014 and 2015 respectively under field conditions.A combination of P.fluorescens DTPF-3+B.amyloliquefaciens DSBA-11 suppressed bacterial wilt and root-knot diseases and also increased the yield of the tomato fruit significantly(p<0.05)under field conditions.展开更多
Disease prediction in plants has acquired much attention in recent years.Meteorological factors such as:temperature,relative humidity,rainfall,sunshine play an important role in a plan’s growth only if they are prese...Disease prediction in plants has acquired much attention in recent years.Meteorological factors such as:temperature,relative humidity,rainfall,sunshine play an important role in a plan’s growth only if they are present in adequate amounts as required by the plant.On the other hand,if the factors are inadequate,they may also support the growth of a disease in the plants.The current study focuses on the Rust disease in Aonla fruits and leaves by utilizing a real time dataset of weather parameters.Fifteen different models are tested for spray prediction on conducive days.Two resampling techniques,random over sampling(ROS)and synthetic minority oversampling technique(SMOTE)have been used to balance the dataset and five different classifiers:support vector machine(SVM),logistic regression(LR),k-nearest neighbor(kNN),decision tree(DT)and random forest(RF)have been used to classify a particular day based on weather conditions as conducive or non-conducive.The classifiers are then evaluated based on four performance metrics:accuracy,precision,recall and F1-score.The results indicate that for imbalanced dataset,kNN is appropriate with high precision and recall values.Considering both balanced and imbalanced dataset models,the proposed model SMOTE-RF performs best among all models with 94.6%accuracy and can be used in a real time application for spray prediction.Hence,timely fungicide spray prediction without over spraying will help in better productivity and will prevent the yield loss due to rust disease in Aonla crop.展开更多
Change in global climate is primarily due to rising concentrations of greenhouse gases in the atmosphere that is mostly caused by human activities.The important factors affecting the occurrence and spread of the plant...Change in global climate is primarily due to rising concentrations of greenhouse gases in the atmosphere that is mostly caused by human activities.The important factors affecting the occurrence and spread of the plant diseases are temperature,moisture,light,and CO_(2) concentration.These factors cause physiological changes in plants that result in increase in intensity of crop diseases.Climate change causes a significant impact on germination,reproduction,sporulation and spore dispersal of pathogens.Climate change affects all life stages of the pathogen as well as its host to cause impact on host-pathogen interaction which facilitates the emergence of new races of the pathogen ultimately breakdowns the host resistance.It also affects the microbial community in the soil which is beneficial to the plants in various aspects.The minor diseases become major ones due to alteration in climatic parameters thus posing a threat to the food security.展开更多
Conservation agriculture(CA)is considered as a suitable technique for soil erosion control,productivity enhancement,and improved economic benefits.To investigate these issues,an experiment was conducted under rainfed ...Conservation agriculture(CA)is considered as a suitable technique for soil erosion control,productivity enhancement,and improved economic benefits.To investigate these issues,an experiment was conducted under rainfed conditions using grass vegetation strip(VS)with minimum tillage,organic amendments and weed mulch during June 2007-October 2011 at Dehradun,Uttarakhand in the Indian Himalayan region.Results showed that the mean wheat equivalent yield was47%higher in the plots under with CA compared with conventional agriculture in a maize-wheat crop rotation.Mean runoff coefficients and soil loss with CA plots were45%less and54%less than conventional agriculture plots.On average,after the harvest of maize,soil moisture conservation up to 90 cm soil depth for wheat crop was 108%higher under CA than conventional agriculture plots.The net return from the plots with CA was 85%higher,and when expressed net return per tonne of soil loss,it was four and half times higher than conventional practice.Results demonstrate that the suitable CA practice(a grass strip of Palmarosa with applied organic amendments(farmyard manure,vermicompost and poultry manure)along with weed mulching under conservation tillage)enhances system productivity,reduces runoff,soil loss and conserve soil moisture.&2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press.Production and Hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
Environmental crises,land degradation,declining factor productivity,and farm profitability questioned the sustainability of linear economy-based existing agricultural production model.Hence,there is a dire need to des...Environmental crises,land degradation,declining factor productivity,and farm profitability questioned the sustainability of linear economy-based existing agricultural production model.Hence,there is a dire need to design and develop circular economy-based production systems to meet the twin objectives of environmental sustainability and food security.Therefore,the productive capacity,natural resource conserving ability,and biomass recycling potential of four intensified maize-based systems viz.maize(Zea mays)+sweet potato(Ipomoea batatas)-wheat,maize+colocasia(Colocasia esculenta)-wheat,maize+turmeric(Curcuma longa),and maize+ginger(Zingiber officinale)were tested consecutively for three years(2020,2021 and 22)in a fixed plot manner at Dehradun region of the Indian Himalaya against the existing maize-wheat systems.The result showed that the maize+sweet potato-wheat system significantly reduced runoff loss(166.3 mm)over the maize-wheat system.The highest through fall(68.12%)and the lowest stem flow(23.54%)were recorded with sole maize.On the contrary,the maize+sweet potato system has the highest stem flow(36.15%)and the lowest through fall.Similarly,the maize+sweet potato system had 5.6 times lesser soil erosion and 0.77 t ha^(-1)higher maize pro-ductivity over the maize-wheat system.Furthermore,the maize+sweet potato system recorded significantly higher soil moisture(19.3%),infiltration rate(0.95 cm h^(-1)),and organic carbon(0.78%)over the rest of the systems.The maize+sweet potato system also recycled the highest nitrogen(299.2 kg ha^(-1)),phosphorus,(31.0 kg ha^(-1)),and potassium(276.2 kg ha^(-1))into the soil system.Hence,it can be inferred that concurrent cultivation of sweet potato,with maize,is a soil-supportive,resource-conserving,and productive production model and can be recommended for achieving the circular economy targets in the Indian Himalayas.展开更多
Rice is very sensitive to low zinc(Zn) supply in submerged paddy soils and Zn deficiency is one of the major limiting factors in determining rice production in India. A field experiment was conducted during the summer...Rice is very sensitive to low zinc(Zn) supply in submerged paddy soils and Zn deficiency is one of the major limiting factors in determining rice production in India. A field experiment was conducted during the summer-rainy seasons of 2009 and 2010 at the research farm of the Indian Agricultural Research Institute, New Delhi, to determine the effects of summer green manure crops and Zn fertilizers on diethylenetriaminepentaacetic acid(DTPA)-extractable(available) Zn concentration in soil and total Zn content in Basmati rice cultivar Pusa Basmati 1 at periodic intervals. Summer green manure crops included Sesbania aculeata(Dhaincha),Crotalaria juncea(Sunhemp), and Vigna unguiculata(Cowpea) and the Zn fertilizers used were ethylenediaminetetraacetic acid(EDTA)-chelated Zn, ZnSO4·7H2O, ZnSO4·H2O, ZnO, and ZnSO4·7H2O + ZnO. Beneficial effects of summer green manure crops and Zn fertilizers on DTPA-extractable Zn concentration in soil and total Zn content in dry matter of Basmati rice at periodic intervals were observed, with significant increases in all the determined parameters, in comparison with those in the control(no Zn application or summer fallow). The rate of increase varied among summer green manure crops and Zn fertilizers during both years. Among the summer green manures, incorporation of S. aculeata led to a significant increase in mean Zn content in Basmati rice grain and straw when compared with C. juncea, V. unguiculata, and summer fallow treatments. Among the Zn fertilizers, significant increases in Zn content in Basmati rice dry matter and DTPA-extractable Zn concentration in soil during various growth stages of the plant were recorded with EDTA-chelated Zn application, followed by the application of ZnSO4·7H2O, ZnSO4·H2O, ZnSO4·7H2O + ZnO, ZnO,and no Zn. The highest mean Zn content in Basmati rice grain and straw was recorded with EDTA-chelated Zn application in 2009 and 2010, respectively. The application of ZnSO4·7H2O was the second best treatment after EDTA-chelated Zn;however, it was statistically inferior to EDTA-chelated Zn. The lowest values were recorded with the control(no Zn application) during both years of study. The amount of Zn concentration in soil was found to be significantly positively correlated with the Zn content in Basmati rice dry matter during both years. Significantly higher levels of residual fertility in soil after the harvest of Basmati rice were observed with application of EDTA-chelated Zn and incorporation of S. aculeata when compared with those of other Zn sources and summer green manures.展开更多
Effect of tillage and crop residue management on soil properties,crop performance,energy relations and economics in greengram(Vigna radiata L.)was evaluated under four maize-based cropping systems in an Inceptisol of ...Effect of tillage and crop residue management on soil properties,crop performance,energy relations and economics in greengram(Vigna radiata L.)was evaluated under four maize-based cropping systems in an Inceptisol of Delhi,India.Soil bulk density,hydraulic conductivity and aggregation at 0-15 cm layer were significantly affected both by tillage and cropping systems,while zero tillage significantly increased the soil organic carbon content.Yields of greengram were significantly higher in maize-chickpea and maize-mustard systems,more so with residue addition.When no residue was added,conventional tillage required 20%higher energy inputs than the zero tillage,while the residue addition increased the energy output in both tillage practices.Maize-wheat-greengram cropping system involved the maximum energy requirement and the cost of production.However,the largest net return was obtained from the maize-chickpea-greengram system under the conventional tillage with residue incorporation.Although zero tillage resulted in better aggregation,C content and N availability in soil,and reduced the energy inputs,cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.展开更多
Mango(Mangifera indica)is one of the most popular fruits in the world.During processing,the byproducts such as peel,seed and kernel are produced,which are high in bioactive components.There is a need to utilize them t...Mango(Mangifera indica)is one of the most popular fruits in the world.During processing,the byproducts such as peel,seed and kernel are produced,which are high in bioactive components.There is a need to utilize them to formulate food products or extract the functional components.This paper provides an overview about the nutritional composition of mango byproducts besides discussing the bioactive compounds(BACs).The manuscript also explores the existing evidences on the biological activity of BACs and the potential of mango peel and seed kernel to develop value-added foods and beverages.Mango kernel is a great source of macronutrients and micronutrients with a relatively high antioxidant and polyphenolic content,whereas mango peels are rich in protocatechuic acids,mangiferin andβ-carotene.These BACs demonstrate numerous biological activities including anti-oxidant antimicrobial,anti-diabetic,anti-cancer and anti-inflammatory properties.One of the promising strategies to utilize these byproducts is the development of different value-added food products such as bakery products,meat products,and dairy-based products for improving their phenolic compounds,fiber content,carotenoids,and antioxidant activity.This review thus illustrates the nutraceutical and pharmacological properties of mango byproducts and their appropriate use to enhance nutrition and health.展开更多
Carbon(C)is a key constitutive element in living organisms(plants,microbes,animals,and humans).Carbon is also a basic component of agriculture because it plays a dynamic role in crop growth,development,nutrient cyclin...Carbon(C)is a key constitutive element in living organisms(plants,microbes,animals,and humans).Carbon is also a basic component of agriculture because it plays a dynamic role in crop growth,development,nutrient cycling,soil fertility,and other agricultural features.The presence of C enhances soil physical,chemical,and biological properties.The C cycle supports all life on the Earth by transferring C between living organisms and the environment.The global climate is changing,and this change is attributable to the release of carbon dioxide and other greenhouse gases from human activities.Owing to the global climate change,agriculture is expected to be majorly affected.Agricultural production is directly linked to the climate.The five main global C pools are the oceanic,geologic,pedologic,atmospheric,and biotic pools,with specific reservoirs and inter-pool fluxes.The soil organic matter has various organic C pools(active,slow,and passive pools),containing various C-based fractions and specific liability pools.Climate,geology,land use,and management techniques are some of the variables that affect organic C and its reservoirs.The dynamics of each of these variables must be understood for a thorough knowledge of how they impact the soil C pools and storage capacity under the changing climate conditions.This review provides a comprehensive overview of the various factors that affect soil C pools/fractions and their C sequestration capacity.展开更多
The study was carried out to investigate the effect of tree age on postharvest attributes and mineral content of Amrapali mango fruits. Effect of 3 different tree ages(6, 18 and 30 years) on functional components, inc...The study was carried out to investigate the effect of tree age on postharvest attributes and mineral content of Amrapali mango fruits. Effect of 3 different tree ages(6, 18 and 30 years) on functional components, including the antioxidant activity(AOX), total phenols, total carotenoids,ascorbic acid and minerals like Ca, K, Mg, Fe, Zn, Cu, Mn and B along with total sugars, total soluble solids(TSS) and titratable acidity(TA),respiration rate, polygalacturonase(PG) and pectin methylesterase(PME) activities in Amrapali cultivar were studied. With tree ageing total phenols, ascorbic acid and antioxidant activity decreased whereas total carotenoids increased. Ca diminished and K elevated with the tree age progression while, B, Fe, Cu, Zn, and Mn showed an indefinite pattern. Total soluble solids and total sugars were recorded higher in 18 year old tree fruits. Fruit respiration rate, polygalacturonase and pectin methylesterase activities showed an upward trend with tree ageing. The study indicates that fruit produced from middle age group mango orchard(18 year old) suits to the requirement of consumers as well as industry.展开更多
The sustainability of prevailing maize-fallow system in rainfed ecosystems of the Eastern Himalayan region(EHR)of India is often questioned due to poor economic return and negative impact on soil health.Hence,the six ...The sustainability of prevailing maize-fallow system in rainfed ecosystems of the Eastern Himalayan region(EHR)of India is often questioned due to poor economic return and negative impact on soil health.Hence,the six cropping systems,maize-fallow(M-F),maize t cowpea-rapeseed(M t C-Rs),maize t cowpea-buckwheat(M t C-Bw),maize t cowpea-barley(M t CeB),maize t cowpea-garden pea(M t C-GP)and maize t cowpeaerajmash(M t C-R)in the main plot and three soil moisture conservation measures,no-mulch(NM),maize stover mulch(MSM)and maize stover t weed biomass mulch(MSM t WBM)in sub-plot were evaluated for four consecutive years(2014-18)at a Research Farm in fixed plot fashion.Results indicated that cowpea co-culture with maize and inclusion of winter crop increased maize yield by 6.2e23.5%over M-F.Among the systems,the M t C-GP recorded the highest crop productivity.The residual effect of MSM t WBM increased maize grain yield by 19.1%over NM.Cultivation of maize t cowpea-winter crops significantly improved the available N(3.2e12.9%),P(3.6 e12.7%),K(1.9e26.3%),organic carbon(9.2e16.8%),microbial biomass carbon-MBC(15.2e43.9%)and dehydrogenases-DHA(17.2e42.3%)in soil at 0e15 cm depth as compared to M-F.The M t C-GP also recorded maximum net return(US$2460 ha1),benefit:cost(B:C)ratio(2.86)and energy use efficiency(7.9%).The MSM t WBM recorded higher net return(US$1680 ha1)and B:C ratio(2.46)over NM.Hence,cowpea t maize-garden pea(M t C-GP)along with the application of MSM t WBM is a sustainable production practice to intensify the organically managed maize-fallow system in rainfed regions of the EHR of India and other similar ecosystems.展开更多
Kinnow mandarin is a high value citrus crop in the fruit industry.However,the fruits are vulnerable to a variety of phytopathogens and suffer huge quantitative and qualitative losses.Pathogenic filamentous fungi like ...Kinnow mandarin is a high value citrus crop in the fruit industry.However,the fruits are vulnerable to a variety of phytopathogens and suffer huge quantitative and qualitative losses.Pathogenic filamentous fungi like Penicillium digitatum,Penicillium italicum,and Geotrichum candidum are mainly responsible for postharvest losses.Alternative to synthetic fungicides,the bacteria and yeast-based biocontrol approaches are the most efficient means for controlling postharvest diseases.The antagonistic potential of five biocontrol agents such as Debaryomyces hansenii,Lactobacillus plantarum,Metschnikowia pulcherima,Pichia guilliermondi and Rhodotorula minuta var.minuta was assessed under both in vitro and in vivo conditions against the mycelial growth of postharvest pathogens using dual culture method.The results revealed that R.minuta var.minuta was the most promising antagonist with 71.98%,76.18%and 67.46%mean mycelial growth inhibition of P.digitatum,P.italicum and G.candidum respectively,over untreated potato dextrose agar(PDA)plates after 192 h of incubation under in vitro.Further,under in vivo,the fruits treated with R.minuta var.minuta did not impair the quality and sensory attributes during ambient storage.Hence,R.minuta var.minuta proved an eco-friendly and safer substitute to synthetic fungicides for postharvest disease management of Kinnow mandarin fruits.展开更多
文摘Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.
基金the financial assistance received in the form of Senior Research Fellowship from the Director, ICAR-Indian Agricultural Research Institute, New Delhi, India, during his Doctor of Philosophy degree program
文摘Zinc(Zn) ferti-fortification using different sources and methods in Zn deficient soils is being advocated to increase Zn concentration in rice kernel as an alternative to pursuing greater Zn-use efficiency(ZnUE). A two-year field study was conducted to assess the effect of Zn application on Zn content and uptake at several growth stages and in several parts of the rice kernel: hull, bran, and the white rice kernel. Variety ‘PB 1509' with 1.25 kg Zn ha^(-1) as Zn-EDTA + 0.5% foliar spray(FS) at maximum tillering(MT) and panicle initiation(PI) stages registered the highest Zn content in hull, bran, and white rice kernel. Among parts of the rice kernel, Zn concentration decreased in the order hull > bran > white rice kernel,indicating that brown rice kernels are much denser in Zn content than polished rice.Considering the higher Zn accumulation in the bran, brown rice consumption, especially in Asia and Africa, could be recommended to overcome Zn malnutrition. The variety ‘PB 1401'showed the highest Zn uptake in rice straw, while ‘PB 1509' showed the highest Zn uptake in hull and white rice kernel. Application of 1.25 kg Zn ha^(-1)(Zn-EDTA) + 0.5% FS at MT and PI and 2.5 kg Zn ha^(-1) ZnSO_4·7H_2O(ZnSHH) + 0.5% FS at MT and PI resulted in higher Zn uptake than other treatments. On average, about one third of total Zn uptake remained in the white rice kernel, with the remaining two thirds accumulating in both hull and bran of brown rice. Zn-EDTA along with 0.5% FS, despite the application of a lower quantity of Zn leading to the highest Zn mobilization efficiency index(ZnMEI) and Zn-induced nitrogen recovery efficiency(ZniNRE), produced the highest kernel yield. However, of the two Zn sources, Zn-EDTA contributed more to the increase in ZnUE than did ZnSHH.
文摘The agriculture industry is undergoing a rapid digital transformation and is growing powerful by the pillars of cutting-edge approaches like artificial intelligence and allied technologies.At the core of artificial intelligence,deep learning-based computer vision enables various agriculture activities to be performed automatically with utmost precision enabling smart agriculture into reality.Computer vision techniques,in conjunction with high-quality image acquisition using remote cameras,enable non-contact and efficient technology-driven solutions in agriculture.This review contributes to providing state-of-the-art computer vision technologies based on deep learning that can assist farmers in operations starting from land preparation to harvesting.Recent works in the area of computer vision were analyzed in this paper and categorized into(a)seed quality analysis,(b)soil analysis,(c)irrigation water management,(d)plant health analysis,(e)weed management(f)livestock management and(g)yield estimation.The paper also discusses recent trends in computer vision such as generative adversarial networks(GAN),vision transformers(ViT)and other popular deep learning architectures.Additionally,this study pinpoints the challenges in implementing the solutions in the farmer’s field in real-time.The overall finding indicates that convolutional neural networks are the corner stone of modern computer vision approaches and their various architectures provide high-quality solutions across various agriculture activities in terms of precision and accuracy.However,the success of the computer vision approach lies in building the model on a quality dataset and providing real-time solutions.
基金supported by the grant from the Department of Biotechnology,Ministry of Science and Technology,India(Grant No.BT/PR18924/COE/34/48/2017).
文摘Exploration of novel genetic resources against root-knot nematode(RKN)is necessary to strengthen the resistance breeding program in cultivated rice,and investigations on the role of genotype-specific root anatomy in conferring a structural barrier against nematode invasion are largely underexplored.Here,we reported a highly-resistant rice germplasm Phule Radha that conferred remarkably lower RKN parasitic fitness in terms of reduced penetration and delayed development and reproduction when compared with susceptible cultivar PB1121.Using histological and biochemical analyses,we demonstrated that an enhanced suberin deposition in the exodermal root tip tissue of Phule Radha compared to PB1121 can effectively form a penetrative barrier against RKN infection,and this preformed barrier in the control tissue did not necessarily alter to a greater extent when challenged with RKN stress.Using qRT-PCR analysis,we showed that a number of suberin biosynthesis genes were greatly expressed in the exodermis of Phule Radha compared to PB1121.In sum,the present study established the role of rice exodermal barrier system in defense against an important soil-borne pathogen.
基金funded by the Indian Council of Agricultural Research(ICAR),New Delhi
文摘Plots under conservation tillage may require higher amount of potassium(K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize(Zea mays L)/cowpea(Vigna sinensis L.) based cropping system under minimum tillage(MT). All crops recorded higher grain yield with a higher dose of K(120 kg K2 O ha-1) than recommended K(40 kg K2 O ha-1). The five years' average yield data showed that higher K application(120 kg K2 O ha-1) produced 16.4%(P<0.05)more maize equivalent yield. Cowpea based rotation yielded 14.2%(P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higherdoses of K application not only increased the water use efficiency(WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon(SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize(by 9.5%) and cowpea(by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.
文摘The genus Musa is one of three genera in the family Musaceae, which includes bananas and plantains, which are monocotyledonous plants. Bananas have valuable nutritional content of vitamin C, B6, minerals, and dietary fiber and are a rich food energy source, given that carbohydrates account for 22%–32% of fruit weight. Molecular markers are valuable for crop improvement and population genetics studies. The availability of whole-genome sequence and in silico approaches has revolutionized bulk marker discovery. We describe an online web genomic resource, BanSatDB(http://webtom.cabgrid.res.in/bansatdb/) having the highest number(>341,000) of putative STR markers from Musa genera so far, represented by three species: M. acuminata(110,000), M. balbisiana(107,000), and M. itinerans(124,000)from 11 chromosomes of each species. BanSatDB has also been populated with 580 validated STR markers from the published literature. It is based on a three-tier architecture using MySQL, PHP and Apache. The markers can be retrieved by use of multiple search parameters including chromosome number(s), microsatellite types(simple or compound),repeat nucleotides(1–6), copy number, microsatellite length, pattern of repeat motif, and chromosome location. These markers can be used for Distinctness, Uniformity and Stability(DUS) tests of variety identification and for marker assisted selection(MAS) in variety improvement and management. These STRs have also proved to be helpful in classification of Musa germplasm to distinguish individual accessions and in the development of a standardized procedure for genotyping. These markers can also be used in gene discovery and QTL mapping. The database represents a source of markers for developing and implementing new approaches for molecular breeding, which are required to enhance banana productivity.
基金the Indian Council of Agricultural Research(ICAR)-National Institute for Plant Biotechnology,National Agricultural Higher Education Project:Centre for Advanced Agricultural Science and Technology(Grant No.1010033)ICAR-Centre for Agricultural Bioinformatics,Indian Agricultural Statistics Research Institute,New Delhi(IASRI)(Grant No.1006456).
文摘von Willebrand factor A(vWA)genes are well characterized in humans except for few BONZAI genes,but the vWA genes are least explored in plants.Considering the novelty and vital role of vWA genes,this study aimed at characterization of vWA superfamily in rice.Rice genome was found to have 40 vWA genes distributed across all the 12 chromosomes,and 20 of the 40 vWA genes were unique while the remaining shared large fragment similarities with each other,indicating gene duplication.In addition to vWA domain,vWA proteins possess other different motifs or domains,such as ubiquitin interacting motif in protein degradation pathway,and RING finger in protein-protein interaction.Expression analysis of vWA genes in available expression data suggested that they probably function in biotic and abiotic stress responses including hormonal response and signaling.The frequency of transposon elements in the entire 3K rice germplasm was negligible except for 9 vWA genes,indicating the importance of these genes in rice.Structural and functional diversities showed that the vWA genes in a blast-resistant rice variety Tetep had huge variations compared to blast-susceptible rice varieties HP2216 and Nipponbare.qRT-PCR analysis of vWA genes in Magnaporthe oryzae infected rice tissues indicated OsvWA9,OsvWA36,OsvWA37 and OsvWA18 as the optimal candidate genes for disease resistance.This is the first attempt to characterize vWA gene family in plant species.
基金supported by the Department of Biotechnology,New Delhi,India.
文摘Rice varieties having high Fe concentration in the endospermic region can be used as a good source for Fe deficit population.In this study,303 Oryza sativa varieties and 1 Oryza rufipogon accession were assessed for spatial Fe accumulation in grains by Prussian blue staining method.Spatial ferritin protein distribution in grains was visualized by immunohistochemistry,and ferritin expression was assessed in selected rice varieties using semi-quantitative reverse transcription PCR.Three popular rice varieties,namely Sarjoo 52,Madhukar and Jalmagna,and the O.rufipogon variety showed Fe in all the regions of grains,and the highest Fe concentration was observed in the embryo region.Some high-yielding varieties like Swarna,Swarna Sub 1,CSR13 and NDRR359 had lower Fe concentration in the embryo region.The highest Fe concentration was detected in O.rufipogon(49.8μg/g),followed by Sarjoo 52(26.1μg/g)and Madhukar(25.7μg/g).Phytic acid concentration was the minimum in O.rufipogon(5.75 mg/g)followed by Sarjoo 52(5.83 mg/g).Western blot and semi-quantitative reverse transcription PCR showed higher expression of ferritin gene in O.rufipogon,Sarjoo 52 and Madhukar.In conclusion,O.rufipogon and Sarjoo 52 had higher Fe concentration in the embryo regions as well as endosperm and aleurone layer,whereas the other varieties had lower Fe concentration in the endosperm.Sarjoo 52 could be used as a donor in the rice breeding program for the generation of new varieties with elevated grain Fe concentration.
文摘Bacterial wilt complex disease of tomato(Solanum lycopersicum L.)was incited jointly by bacterial wilt pathogen Ralstonia solanacearum and Meloidogyne incognita worldwide.Bio-efficacy of bacterial antagonists i.e.B.amyloliquefaciens DSBA-11 and P.fluorescens DTPF-3 was studied against the wilt disease complex in tomato at National Phytotran facility Indian Agricultural Research Institute(IARI),New Delhi,at 26±2°C.Minimum wilt disease incidence(26.00%)with the highest bio-control efficacy(64.15%),less juvenile population(19.33 J2/g of soil)of M.incognita was recorded in the combined application of DTPF-3+DSBA-11 after 30 d of inoculation under glasshouse conditions.In a field study,minimum bacterial wilt disease incidences 19.0%and 20.4%were recorded in the bleaching powder treatment followed by mixed application of DSBA-11+DTPF-3,19.6%and 21.2%wilt incidence in 2014 and 2015 respectively.However,a reduction of root-knot gall index was recorded a maximum of 59.76%and 69.62%in DSBA-11+DTPF-3 treated plants followed by 54.88%and 60.13%over control in DTPF-3 treatment in 2014 and 2015 respectively.The yield of tomato fruit was increased over control by 17.48%and 16.97%in 2014 and 2015 respectively under field conditions.A combination of P.fluorescens DTPF-3+B.amyloliquefaciens DSBA-11 suppressed bacterial wilt and root-knot diseases and also increased the yield of the tomato fruit significantly(p<0.05)under field conditions.
文摘Disease prediction in plants has acquired much attention in recent years.Meteorological factors such as:temperature,relative humidity,rainfall,sunshine play an important role in a plan’s growth only if they are present in adequate amounts as required by the plant.On the other hand,if the factors are inadequate,they may also support the growth of a disease in the plants.The current study focuses on the Rust disease in Aonla fruits and leaves by utilizing a real time dataset of weather parameters.Fifteen different models are tested for spray prediction on conducive days.Two resampling techniques,random over sampling(ROS)and synthetic minority oversampling technique(SMOTE)have been used to balance the dataset and five different classifiers:support vector machine(SVM),logistic regression(LR),k-nearest neighbor(kNN),decision tree(DT)and random forest(RF)have been used to classify a particular day based on weather conditions as conducive or non-conducive.The classifiers are then evaluated based on four performance metrics:accuracy,precision,recall and F1-score.The results indicate that for imbalanced dataset,kNN is appropriate with high precision and recall values.Considering both balanced and imbalanced dataset models,the proposed model SMOTE-RF performs best among all models with 94.6%accuracy and can be used in a real time application for spray prediction.Hence,timely fungicide spray prediction without over spraying will help in better productivity and will prevent the yield loss due to rust disease in Aonla crop.
文摘Change in global climate is primarily due to rising concentrations of greenhouse gases in the atmosphere that is mostly caused by human activities.The important factors affecting the occurrence and spread of the plant diseases are temperature,moisture,light,and CO_(2) concentration.These factors cause physiological changes in plants that result in increase in intensity of crop diseases.Climate change causes a significant impact on germination,reproduction,sporulation and spore dispersal of pathogens.Climate change affects all life stages of the pathogen as well as its host to cause impact on host-pathogen interaction which facilitates the emergence of new races of the pathogen ultimately breakdowns the host resistance.It also affects the microbial community in the soil which is beneficial to the plants in various aspects.The minor diseases become major ones due to alteration in climatic parameters thus posing a threat to the food security.
文摘Conservation agriculture(CA)is considered as a suitable technique for soil erosion control,productivity enhancement,and improved economic benefits.To investigate these issues,an experiment was conducted under rainfed conditions using grass vegetation strip(VS)with minimum tillage,organic amendments and weed mulch during June 2007-October 2011 at Dehradun,Uttarakhand in the Indian Himalayan region.Results showed that the mean wheat equivalent yield was47%higher in the plots under with CA compared with conventional agriculture in a maize-wheat crop rotation.Mean runoff coefficients and soil loss with CA plots were45%less and54%less than conventional agriculture plots.On average,after the harvest of maize,soil moisture conservation up to 90 cm soil depth for wheat crop was 108%higher under CA than conventional agriculture plots.The net return from the plots with CA was 85%higher,and when expressed net return per tonne of soil loss,it was four and half times higher than conventional practice.Results demonstrate that the suitable CA practice(a grass strip of Palmarosa with applied organic amendments(farmyard manure,vermicompost and poultry manure)along with weed mulching under conservation tillage)enhances system productivity,reduces runoff,soil loss and conserve soil moisture.&2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press.Production and Hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
文摘Environmental crises,land degradation,declining factor productivity,and farm profitability questioned the sustainability of linear economy-based existing agricultural production model.Hence,there is a dire need to design and develop circular economy-based production systems to meet the twin objectives of environmental sustainability and food security.Therefore,the productive capacity,natural resource conserving ability,and biomass recycling potential of four intensified maize-based systems viz.maize(Zea mays)+sweet potato(Ipomoea batatas)-wheat,maize+colocasia(Colocasia esculenta)-wheat,maize+turmeric(Curcuma longa),and maize+ginger(Zingiber officinale)were tested consecutively for three years(2020,2021 and 22)in a fixed plot manner at Dehradun region of the Indian Himalaya against the existing maize-wheat systems.The result showed that the maize+sweet potato-wheat system significantly reduced runoff loss(166.3 mm)over the maize-wheat system.The highest through fall(68.12%)and the lowest stem flow(23.54%)were recorded with sole maize.On the contrary,the maize+sweet potato system has the highest stem flow(36.15%)and the lowest through fall.Similarly,the maize+sweet potato system had 5.6 times lesser soil erosion and 0.77 t ha^(-1)higher maize pro-ductivity over the maize-wheat system.Furthermore,the maize+sweet potato system recorded significantly higher soil moisture(19.3%),infiltration rate(0.95 cm h^(-1)),and organic carbon(0.78%)over the rest of the systems.The maize+sweet potato system also recycled the highest nitrogen(299.2 kg ha^(-1)),phosphorus,(31.0 kg ha^(-1)),and potassium(276.2 kg ha^(-1))into the soil system.Hence,it can be inferred that concurrent cultivation of sweet potato,with maize,is a soil-supportive,resource-conserving,and productive production model and can be recommended for achieving the circular economy targets in the Indian Himalayas.
文摘Rice is very sensitive to low zinc(Zn) supply in submerged paddy soils and Zn deficiency is one of the major limiting factors in determining rice production in India. A field experiment was conducted during the summer-rainy seasons of 2009 and 2010 at the research farm of the Indian Agricultural Research Institute, New Delhi, to determine the effects of summer green manure crops and Zn fertilizers on diethylenetriaminepentaacetic acid(DTPA)-extractable(available) Zn concentration in soil and total Zn content in Basmati rice cultivar Pusa Basmati 1 at periodic intervals. Summer green manure crops included Sesbania aculeata(Dhaincha),Crotalaria juncea(Sunhemp), and Vigna unguiculata(Cowpea) and the Zn fertilizers used were ethylenediaminetetraacetic acid(EDTA)-chelated Zn, ZnSO4·7H2O, ZnSO4·H2O, ZnO, and ZnSO4·7H2O + ZnO. Beneficial effects of summer green manure crops and Zn fertilizers on DTPA-extractable Zn concentration in soil and total Zn content in dry matter of Basmati rice at periodic intervals were observed, with significant increases in all the determined parameters, in comparison with those in the control(no Zn application or summer fallow). The rate of increase varied among summer green manure crops and Zn fertilizers during both years. Among the summer green manures, incorporation of S. aculeata led to a significant increase in mean Zn content in Basmati rice grain and straw when compared with C. juncea, V. unguiculata, and summer fallow treatments. Among the Zn fertilizers, significant increases in Zn content in Basmati rice dry matter and DTPA-extractable Zn concentration in soil during various growth stages of the plant were recorded with EDTA-chelated Zn application, followed by the application of ZnSO4·7H2O, ZnSO4·H2O, ZnSO4·7H2O + ZnO, ZnO,and no Zn. The highest mean Zn content in Basmati rice grain and straw was recorded with EDTA-chelated Zn application in 2009 and 2010, respectively. The application of ZnSO4·7H2O was the second best treatment after EDTA-chelated Zn;however, it was statistically inferior to EDTA-chelated Zn. The lowest values were recorded with the control(no Zn application) during both years of study. The amount of Zn concentration in soil was found to be significantly positively correlated with the Zn content in Basmati rice dry matter during both years. Significantly higher levels of residual fertility in soil after the harvest of Basmati rice were observed with application of EDTA-chelated Zn and incorporation of S. aculeata when compared with those of other Zn sources and summer green manures.
文摘Effect of tillage and crop residue management on soil properties,crop performance,energy relations and economics in greengram(Vigna radiata L.)was evaluated under four maize-based cropping systems in an Inceptisol of Delhi,India.Soil bulk density,hydraulic conductivity and aggregation at 0-15 cm layer were significantly affected both by tillage and cropping systems,while zero tillage significantly increased the soil organic carbon content.Yields of greengram were significantly higher in maize-chickpea and maize-mustard systems,more so with residue addition.When no residue was added,conventional tillage required 20%higher energy inputs than the zero tillage,while the residue addition increased the energy output in both tillage practices.Maize-wheat-greengram cropping system involved the maximum energy requirement and the cost of production.However,the largest net return was obtained from the maize-chickpea-greengram system under the conventional tillage with residue incorporation.Although zero tillage resulted in better aggregation,C content and N availability in soil,and reduced the energy inputs,cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.
文摘Mango(Mangifera indica)is one of the most popular fruits in the world.During processing,the byproducts such as peel,seed and kernel are produced,which are high in bioactive components.There is a need to utilize them to formulate food products or extract the functional components.This paper provides an overview about the nutritional composition of mango byproducts besides discussing the bioactive compounds(BACs).The manuscript also explores the existing evidences on the biological activity of BACs and the potential of mango peel and seed kernel to develop value-added foods and beverages.Mango kernel is a great source of macronutrients and micronutrients with a relatively high antioxidant and polyphenolic content,whereas mango peels are rich in protocatechuic acids,mangiferin andβ-carotene.These BACs demonstrate numerous biological activities including anti-oxidant antimicrobial,anti-diabetic,anti-cancer and anti-inflammatory properties.One of the promising strategies to utilize these byproducts is the development of different value-added food products such as bakery products,meat products,and dairy-based products for improving their phenolic compounds,fiber content,carotenoids,and antioxidant activity.This review thus illustrates the nutraceutical and pharmacological properties of mango byproducts and their appropriate use to enhance nutrition and health.
文摘Carbon(C)is a key constitutive element in living organisms(plants,microbes,animals,and humans).Carbon is also a basic component of agriculture because it plays a dynamic role in crop growth,development,nutrient cycling,soil fertility,and other agricultural features.The presence of C enhances soil physical,chemical,and biological properties.The C cycle supports all life on the Earth by transferring C between living organisms and the environment.The global climate is changing,and this change is attributable to the release of carbon dioxide and other greenhouse gases from human activities.Owing to the global climate change,agriculture is expected to be majorly affected.Agricultural production is directly linked to the climate.The five main global C pools are the oceanic,geologic,pedologic,atmospheric,and biotic pools,with specific reservoirs and inter-pool fluxes.The soil organic matter has various organic C pools(active,slow,and passive pools),containing various C-based fractions and specific liability pools.Climate,geology,land use,and management techniques are some of the variables that affect organic C and its reservoirs.The dynamics of each of these variables must be understood for a thorough knowledge of how they impact the soil C pools and storage capacity under the changing climate conditions.This review provides a comprehensive overview of the various factors that affect soil C pools/fractions and their C sequestration capacity.
文摘The study was carried out to investigate the effect of tree age on postharvest attributes and mineral content of Amrapali mango fruits. Effect of 3 different tree ages(6, 18 and 30 years) on functional components, including the antioxidant activity(AOX), total phenols, total carotenoids,ascorbic acid and minerals like Ca, K, Mg, Fe, Zn, Cu, Mn and B along with total sugars, total soluble solids(TSS) and titratable acidity(TA),respiration rate, polygalacturonase(PG) and pectin methylesterase(PME) activities in Amrapali cultivar were studied. With tree ageing total phenols, ascorbic acid and antioxidant activity decreased whereas total carotenoids increased. Ca diminished and K elevated with the tree age progression while, B, Fe, Cu, Zn, and Mn showed an indefinite pattern. Total soluble solids and total sugars were recorded higher in 18 year old tree fruits. Fruit respiration rate, polygalacturonase and pectin methylesterase activities showed an upward trend with tree ageing. The study indicates that fruit produced from middle age group mango orchard(18 year old) suits to the requirement of consumers as well as industry.
文摘The sustainability of prevailing maize-fallow system in rainfed ecosystems of the Eastern Himalayan region(EHR)of India is often questioned due to poor economic return and negative impact on soil health.Hence,the six cropping systems,maize-fallow(M-F),maize t cowpea-rapeseed(M t C-Rs),maize t cowpea-buckwheat(M t C-Bw),maize t cowpea-barley(M t CeB),maize t cowpea-garden pea(M t C-GP)and maize t cowpeaerajmash(M t C-R)in the main plot and three soil moisture conservation measures,no-mulch(NM),maize stover mulch(MSM)and maize stover t weed biomass mulch(MSM t WBM)in sub-plot were evaluated for four consecutive years(2014-18)at a Research Farm in fixed plot fashion.Results indicated that cowpea co-culture with maize and inclusion of winter crop increased maize yield by 6.2e23.5%over M-F.Among the systems,the M t C-GP recorded the highest crop productivity.The residual effect of MSM t WBM increased maize grain yield by 19.1%over NM.Cultivation of maize t cowpea-winter crops significantly improved the available N(3.2e12.9%),P(3.6 e12.7%),K(1.9e26.3%),organic carbon(9.2e16.8%),microbial biomass carbon-MBC(15.2e43.9%)and dehydrogenases-DHA(17.2e42.3%)in soil at 0e15 cm depth as compared to M-F.The M t C-GP also recorded maximum net return(US$2460 ha1),benefit:cost(B:C)ratio(2.86)and energy use efficiency(7.9%).The MSM t WBM recorded higher net return(US$1680 ha1)and B:C ratio(2.46)over NM.Hence,cowpea t maize-garden pea(M t C-GP)along with the application of MSM t WBM is a sustainable production practice to intensify the organically managed maize-fallow system in rainfed regions of the EHR of India and other similar ecosystems.
文摘Kinnow mandarin is a high value citrus crop in the fruit industry.However,the fruits are vulnerable to a variety of phytopathogens and suffer huge quantitative and qualitative losses.Pathogenic filamentous fungi like Penicillium digitatum,Penicillium italicum,and Geotrichum candidum are mainly responsible for postharvest losses.Alternative to synthetic fungicides,the bacteria and yeast-based biocontrol approaches are the most efficient means for controlling postharvest diseases.The antagonistic potential of five biocontrol agents such as Debaryomyces hansenii,Lactobacillus plantarum,Metschnikowia pulcherima,Pichia guilliermondi and Rhodotorula minuta var.minuta was assessed under both in vitro and in vivo conditions against the mycelial growth of postharvest pathogens using dual culture method.The results revealed that R.minuta var.minuta was the most promising antagonist with 71.98%,76.18%and 67.46%mean mycelial growth inhibition of P.digitatum,P.italicum and G.candidum respectively,over untreated potato dextrose agar(PDA)plates after 192 h of incubation under in vitro.Further,under in vivo,the fruits treated with R.minuta var.minuta did not impair the quality and sensory attributes during ambient storage.Hence,R.minuta var.minuta proved an eco-friendly and safer substitute to synthetic fungicides for postharvest disease management of Kinnow mandarin fruits.