For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.He...For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.展开更多
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ...Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.展开更多
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement...Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.展开更多
Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and...Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims,comprising energy storage and production devices,flexible and wearable optoelectronic devices.A two-step tactic to assemble high-performance polypyrrole(PPy)-based microsupercapacitor(MSC)is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy,and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed.The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm^(−2)(at a current density of 0.1 mA cm^(−2)),an exceptional cycling performance of retaining 79%capacitance after 10,000 charge/discharge cycles at 5 mA cm^(−2).Benefiting from the intermediate graphene,current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate,which delivered an areal capacitance of 70.25 mF cm^(−2) at 0.1 mA cm^(−2) and retained 46%of the initial capacitance at a current density of 1.0 mA cm^(−2).The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.展开更多
The δ13C value is widely used to assess the effects of drought on water status in plants. However, there is little information regarding the δ13C signature in different organs of rice. We conducted a field study to ...The δ13C value is widely used to assess the effects of drought on water status in plants. However, there is little information regarding the δ13C signature in different organs of rice. We conducted a field study to examine whether the δ13C among different plant parts would be affected by the intensities of drought, and to evaluate genotypic variation in δ13C fluctuation among plant parts affected by drought intensities. Two cultivars, “Nipponbare” (Oryzasativa ssp. japonica) and “Kasalath” (O. sativa ssp. indica), were grown in the field with a line-source sprinkler system. The δ13C values of panicles, flag leaves, straws, culms, and roots were measured from plant samples. The δ13C value increased as drought stress increased, especially in the panicles and roots. “Nipponbare” showed higher values of δ13C than “Kasalath” under the well-watered and mild drought stress conditions, but there was no significant difference between the genotypes in the δ13C value under the severe drought stress condition. The variation in δ13C value among different plant parts was also increased with increasing drought stress. In contrast, these variations were small under well-watered conditions. Furthermore, there was much greater variation in the δ13C value among different plant parts in “Kasalath” than in “Nipponbare” when the plants were grown under drought stress conditions. A significant negative relationship was observed between the δ13C value of panicles and shoot dry matter production, suggesting that the δ13C value of panicles may be the best indicator of plant water status in rice.展开更多
In the study area located in Western Kenya near the Lake Victoria, severe soil erosion occurred and it thought to relate to vegetation degradation caused by overgrazing. The livestock density estimated by analyzing sa...In the study area located in Western Kenya near the Lake Victoria, severe soil erosion occurred and it thought to relate to vegetation degradation caused by overgrazing. The livestock density estimated by analyzing satellite image (1.39 TLU/ha for available grazing lands) was lower than that of measured for seven farmers’ grazing lands using GPSs (4.41 TLU/ha, 2011) with variation from 0.83 to 12.36 TLU/ha. Thus, it is clear that the grasslands used by farmers are limited compared with the area of estimated available land for grazing identified by analyzing the satellite image. According to growth-consumption rate model that was developed by the Nyangito et al. (2008) in southeastern Kenya, if livestock density reaches over 7 TLU/ha, pasture growth rate became lower than consumption rate. Grass biomasses of the grazing lands were kept low (less than 50 g/50 × 50 cm2) under high livestock density (three farmers out of seven were higher than 7 TLU/ha). In addition, rainfall pattern is very unstable and we observed stunted growth of grasses during dry spells. Therefore, we concluded that overgrazing. It means that inhibition of continuous re-growth of grasses due to high grazing pressure has been occurred even for small area and contributed to the soil erosion.展开更多
This study aimed at identifying the most preferred water quality tracking system (WQTS) for adoption and the determining factors for the same among the Langata sub County households in Nairobi city, Kenya. Perrenial m...This study aimed at identifying the most preferred water quality tracking system (WQTS) for adoption and the determining factors for the same among the Langata sub County households in Nairobi city, Kenya. Perrenial municipal water shortage in this neighborhood has forced the residents to depend on vended water supplication but whose quality is not possible to verify at the moment. Accordingly, a mobile phone quality tracing application running on blockchain technology platform was developed to fill the gap of provenance tracking. A non-market discrete choice experiments (DCEs) model was deployed in which four-option attribute bundles;with one being the “status quo” choice were presented to each of the 382 randomly sampled respondents from the five wards within the area. Results indicated that Option 2;the communally managed WQTS emerged as the most preferred choice at 53.9%. Secondly, the male factor was identified as the major determinant to this decision. In conclusion, the study proposes for the installation of this new WQTS which will trigger a 12% adjustment of the average household’s monthly water bill. In addition, this paper recommends for a city-wide assessment of residents’ willingness to pay (WTP) for this WQTS, which it deems as an improved response to water shortage problem. Finally, the study contributes to the application of DCEs model in technology adoption literature.展开更多
The informal water market in cities within the Global South is expanding, thanks to drought associated water shortage challenges and other socio-hydrological factors. A midst the growth is the inherent information sig...The informal water market in cities within the Global South is expanding, thanks to drought associated water shortage challenges and other socio-hydrological factors. A midst the growth is the inherent information signal asymmetry driven mainly by the vendors’ unwillingness to share the actual quality data of their source water with their customers. As a result a big mistrust environment has been created as currently;the customers have no mechanism to verify the water quality in real time. This paper aimed at developing an android application software system to fill the gap. The system is to operate the water vending business landscape as a trusted social network site (SNS) using handheld mobile phone devices. An Agile-Scrum methodology was utilized as it allows for quick changes to the system as necessary. An android platform was chosen as the initial Operating System (OS) to run the software system due to its faster global outreach capability. Specifically, Android Studio 3.4.2 IDE running on Windows 10 was deployed. And the primary languages used within the IDE were;Kotlin for the functionality and XML for the user interface (UI). Additionally, the Firebase SDK tools were used for cloud-based database functionality. The results of the prototype include;user side access and feedback exchanges, backend side supports and other added functionalities. The paper is of the strong view that since the system works on anytime-anywhere modality, then it is possible that one can drink the informal water directly. The system is recommended for full scale trial in the affected cities.展开更多
Interest on the investigation of groundwater depletion threat is growing globally and Langata sub County in Nairobi, the capital city of the Republic of Kenya, is not an exception. Because of drought-induced water sho...Interest on the investigation of groundwater depletion threat is growing globally and Langata sub County in Nairobi, the capital city of the Republic of Kenya, is not an exception. Because of drought-induced water shortage, households in Langata do rely on borehole water to augment their intermittent municipal water supply system. Consequently, there is an upsurge of borehole developments as drought events unfold. Previous studies here have focused on impact of borehole depths and density yet little seems to have been done to compute the correlation coefficient between drought events data and historical borehole development records as an assessment for groundwater “grab” syndrome. This study used drought index computation method (SPI) alongside other statistical methods to seek the answer to the problem. Using 57 years of monthly rainfall data and 26 years of borehole development data, the study established that, there is a positive correlation coefficient. Similarly, a trend analysis of borehole drilling and struck water level depths indicated a positive parallel rising trend on both. Further, when the borehole distribution map and struck water level contour maps were plotted, a sign of a probable well interference during pumping was detected, which however, requires a new investigation to confirm the syndrome of groundwater depletion threat. The study has contributed to the groundwater depletion research by deploying statistical research methods for risk detection. Finally, the study has proposed for a new groundwater management policy that will encourage initiation of artificial recharge schemes for the study site and beyond.展开更多
Studies on urban water supply service improvements continue to draw interest across the world. The pressure on freshwater resources is increasing in every region in the face of an increasing demand and climate change ...Studies on urban water supply service improvements continue to draw interest across the world. The pressure on freshwater resources is increasing in every region in the face of an increasing demand and climate change dynamics. Langata sub County in Nairobi city, Kenya faces drought induced water shortage and households rely on water vending and bottled water purchases to augment the inadequate municipal water supplies. Little to our knowledge has been done to assess the cost implication of such a practice here. So the study used household survey method to collect monthly households’ water bills comprising;utility company, water tanker delivery and bottled water purchase from a randomly sampled 382 households spread within the five wards;Karen, South C, Mugumoini, Nairobi West and Nyayo Highrise. The gated communities identified are 57. Simple stochastic analysis of the data was done after data cleaning using MS Excel. It was found that the municipal water serves up to 91.15% of the total average household monthly water demand with a cost share of 27.91%. Water tanker delivery meets 8.61% of the household water demand with a cost share of 50.74%. The bottled water purchases serve 0.24% of a typical household water demand with a total cost share of 21.35%. The water supply deficit which is a mere 8.85% met by tanker deliveries and bottled water purchases has a total average cost share of 72.09%. The computed cost burden is 258%. This means that the households pay more than two and a half times extra above the utility bill per month. The study recommends a new water policy that will incorporate the role of water vendors operated on a cooperative model by the gated communities using standard guidelines.展开更多
基金the financial support of the National Key R&D Program of China(Grant Nos.2021YFB3200701 and 2018YFA0208501)the National Natural Science Foundation of China(Grant Nos.21875260,21671193,91963212,51773206,21731001,and 52272098)Beijing Natural Science Foundation(No.2202069)
文摘For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.
基金the funding from Natural Science Foundation of China(No.52003163)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010670)+1 种基金Science and Technology Innovation Commission of Shenzhen(Nos.KQTD20170810105439418 and 20200812112006001)NTUT-SZU Joint Research Program(Nos.2022005 and 2022015)
文摘Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.
基金supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200)the National Natural Science Foundation of China (NSFC, Nos. 52103236, 91963212, 21875260)Beijing National Laboratory for Molecular Sciences (No. BNLMSCXXM-202005)。
文摘Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
基金support of the National Key R&D Program of China(Grant No.2021YFB3200701,2018YFA0208501)the National Natural Science Foundation of China(Grant No.52272098,21875260,21671193,91963212,51773206,21731001,22272182)Beijing Natural Science Foundation(No.2202069).
文摘Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims,comprising energy storage and production devices,flexible and wearable optoelectronic devices.A two-step tactic to assemble high-performance polypyrrole(PPy)-based microsupercapacitor(MSC)is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy,and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed.The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm^(−2)(at a current density of 0.1 mA cm^(−2)),an exceptional cycling performance of retaining 79%capacitance after 10,000 charge/discharge cycles at 5 mA cm^(−2).Benefiting from the intermediate graphene,current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate,which delivered an areal capacitance of 70.25 mF cm^(−2) at 0.1 mA cm^(−2) and retained 46%of the initial capacitance at a current density of 1.0 mA cm^(−2).The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.
基金supported by NSFC (29774036200174048) and National 863 Project (NO. 2001AA334060) aswell as SKLPPC Foundation Joint Laboratory of Polymer Sciences & Materials
文摘The δ13C value is widely used to assess the effects of drought on water status in plants. However, there is little information regarding the δ13C signature in different organs of rice. We conducted a field study to examine whether the δ13C among different plant parts would be affected by the intensities of drought, and to evaluate genotypic variation in δ13C fluctuation among plant parts affected by drought intensities. Two cultivars, “Nipponbare” (Oryzasativa ssp. japonica) and “Kasalath” (O. sativa ssp. indica), were grown in the field with a line-source sprinkler system. The δ13C values of panicles, flag leaves, straws, culms, and roots were measured from plant samples. The δ13C value increased as drought stress increased, especially in the panicles and roots. “Nipponbare” showed higher values of δ13C than “Kasalath” under the well-watered and mild drought stress conditions, but there was no significant difference between the genotypes in the δ13C value under the severe drought stress condition. The variation in δ13C value among different plant parts was also increased with increasing drought stress. In contrast, these variations were small under well-watered conditions. Furthermore, there was much greater variation in the δ13C value among different plant parts in “Kasalath” than in “Nipponbare” when the plants were grown under drought stress conditions. A significant negative relationship was observed between the δ13C value of panicles and shoot dry matter production, suggesting that the δ13C value of panicles may be the best indicator of plant water status in rice.
文摘In the study area located in Western Kenya near the Lake Victoria, severe soil erosion occurred and it thought to relate to vegetation degradation caused by overgrazing. The livestock density estimated by analyzing satellite image (1.39 TLU/ha for available grazing lands) was lower than that of measured for seven farmers’ grazing lands using GPSs (4.41 TLU/ha, 2011) with variation from 0.83 to 12.36 TLU/ha. Thus, it is clear that the grasslands used by farmers are limited compared with the area of estimated available land for grazing identified by analyzing the satellite image. According to growth-consumption rate model that was developed by the Nyangito et al. (2008) in southeastern Kenya, if livestock density reaches over 7 TLU/ha, pasture growth rate became lower than consumption rate. Grass biomasses of the grazing lands were kept low (less than 50 g/50 × 50 cm2) under high livestock density (three farmers out of seven were higher than 7 TLU/ha). In addition, rainfall pattern is very unstable and we observed stunted growth of grasses during dry spells. Therefore, we concluded that overgrazing. It means that inhibition of continuous re-growth of grasses due to high grazing pressure has been occurred even for small area and contributed to the soil erosion.
文摘This study aimed at identifying the most preferred water quality tracking system (WQTS) for adoption and the determining factors for the same among the Langata sub County households in Nairobi city, Kenya. Perrenial municipal water shortage in this neighborhood has forced the residents to depend on vended water supplication but whose quality is not possible to verify at the moment. Accordingly, a mobile phone quality tracing application running on blockchain technology platform was developed to fill the gap of provenance tracking. A non-market discrete choice experiments (DCEs) model was deployed in which four-option attribute bundles;with one being the “status quo” choice were presented to each of the 382 randomly sampled respondents from the five wards within the area. Results indicated that Option 2;the communally managed WQTS emerged as the most preferred choice at 53.9%. Secondly, the male factor was identified as the major determinant to this decision. In conclusion, the study proposes for the installation of this new WQTS which will trigger a 12% adjustment of the average household’s monthly water bill. In addition, this paper recommends for a city-wide assessment of residents’ willingness to pay (WTP) for this WQTS, which it deems as an improved response to water shortage problem. Finally, the study contributes to the application of DCEs model in technology adoption literature.
文摘The informal water market in cities within the Global South is expanding, thanks to drought associated water shortage challenges and other socio-hydrological factors. A midst the growth is the inherent information signal asymmetry driven mainly by the vendors’ unwillingness to share the actual quality data of their source water with their customers. As a result a big mistrust environment has been created as currently;the customers have no mechanism to verify the water quality in real time. This paper aimed at developing an android application software system to fill the gap. The system is to operate the water vending business landscape as a trusted social network site (SNS) using handheld mobile phone devices. An Agile-Scrum methodology was utilized as it allows for quick changes to the system as necessary. An android platform was chosen as the initial Operating System (OS) to run the software system due to its faster global outreach capability. Specifically, Android Studio 3.4.2 IDE running on Windows 10 was deployed. And the primary languages used within the IDE were;Kotlin for the functionality and XML for the user interface (UI). Additionally, the Firebase SDK tools were used for cloud-based database functionality. The results of the prototype include;user side access and feedback exchanges, backend side supports and other added functionalities. The paper is of the strong view that since the system works on anytime-anywhere modality, then it is possible that one can drink the informal water directly. The system is recommended for full scale trial in the affected cities.
文摘Interest on the investigation of groundwater depletion threat is growing globally and Langata sub County in Nairobi, the capital city of the Republic of Kenya, is not an exception. Because of drought-induced water shortage, households in Langata do rely on borehole water to augment their intermittent municipal water supply system. Consequently, there is an upsurge of borehole developments as drought events unfold. Previous studies here have focused on impact of borehole depths and density yet little seems to have been done to compute the correlation coefficient between drought events data and historical borehole development records as an assessment for groundwater “grab” syndrome. This study used drought index computation method (SPI) alongside other statistical methods to seek the answer to the problem. Using 57 years of monthly rainfall data and 26 years of borehole development data, the study established that, there is a positive correlation coefficient. Similarly, a trend analysis of borehole drilling and struck water level depths indicated a positive parallel rising trend on both. Further, when the borehole distribution map and struck water level contour maps were plotted, a sign of a probable well interference during pumping was detected, which however, requires a new investigation to confirm the syndrome of groundwater depletion threat. The study has contributed to the groundwater depletion research by deploying statistical research methods for risk detection. Finally, the study has proposed for a new groundwater management policy that will encourage initiation of artificial recharge schemes for the study site and beyond.
文摘Studies on urban water supply service improvements continue to draw interest across the world. The pressure on freshwater resources is increasing in every region in the face of an increasing demand and climate change dynamics. Langata sub County in Nairobi city, Kenya faces drought induced water shortage and households rely on water vending and bottled water purchases to augment the inadequate municipal water supplies. Little to our knowledge has been done to assess the cost implication of such a practice here. So the study used household survey method to collect monthly households’ water bills comprising;utility company, water tanker delivery and bottled water purchase from a randomly sampled 382 households spread within the five wards;Karen, South C, Mugumoini, Nairobi West and Nyayo Highrise. The gated communities identified are 57. Simple stochastic analysis of the data was done after data cleaning using MS Excel. It was found that the municipal water serves up to 91.15% of the total average household monthly water demand with a cost share of 27.91%. Water tanker delivery meets 8.61% of the household water demand with a cost share of 50.74%. The bottled water purchases serve 0.24% of a typical household water demand with a total cost share of 21.35%. The water supply deficit which is a mere 8.85% met by tanker deliveries and bottled water purchases has a total average cost share of 72.09%. The computed cost burden is 258%. This means that the households pay more than two and a half times extra above the utility bill per month. The study recommends a new water policy that will incorporate the role of water vendors operated on a cooperative model by the gated communities using standard guidelines.