The importance of this study lies in the in-depth exploration of the ecological diversity of otoliths in Elopes lacerta, based on the analysis of data from 260 individuals collected from various sites, including the P...The importance of this study lies in the in-depth exploration of the ecological diversity of otoliths in Elopes lacerta, based on the analysis of data from 260 individuals collected from various sites, including the Porto Novo lagoon, the Cotonou lagoon, Lake Nokou, and the Atlantic coast in southern Benin. The results highlight significant variations in otolith morphology, establishing relevant links with the biological parameters of the fish at each site. Exploration of the asymmetry between the right and left sides reveals notable distinctions between these two aspects. Analysis of otolith shape thus emerges as a valuable tool for discriminating between stocks and providing a better understanding of ecological variations. The local diversity observed highlights the crucial importance of implementing adaptive management strategies to ensure effective conservation of the species and its habitat.展开更多
Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2....Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2.74 g; average weigh±SD) were reared at four different initial densities (low 0.66, medium 1.26, sub-high 2.56, high 4.00 kg/m^2) for 10 weeks in RAS at 23±1℃ Final densities were 4.67, 7.25, 14.16, and 17.47 kg/m^2, respectively, which translate to 82, 108, 214, and 282 percent coverage of the tank bottom. Density had both negative and independent impacts on growth. The final mean weight, specific growth rate (SGR), and voluntary feed intake significantly decreased and the coefficient of variation (CV) of final body weight increased with increase in stocking density. The medium and sub-high density groups did not differ significantly in SGR, mean weight, CV, food conversion rate (FCR), feed intake, blood parameters, and digestive enzymes. The protease activities of the digestive tract at pH 7, 8.5, 9, and 10 were significantly higher for the highest density group, but tended to be lower (not significantly) at pH 4 and 8.5 for the lowest density group. The intensity of protease activity was inversely related to feed intake at the different densities. Catalase activity was higher (but not significantly) at the highest density, perhaps because high density started to induce an oxidative effect in turbot. In conclusion, turbot can be cultured in RAS at a density of less than 17.47 kg/m^2. With good water quality and no feed limitation, initial density between 1.26 and 2.56 kg/m^2 (final: 7.25 and 14.16 kg/m^2) would not negatively affect the turbot cultured in RAS. For culture at higher density, multi-level feeding devices are suggested to ease feeding competition.展开更多
The hydropower sector is currently experiencing several technological developments.New technologies and practices are emerging to make hydropower more flexible and more sustainable.Novel materials have also been recen...The hydropower sector is currently experiencing several technological developments.New technologies and practices are emerging to make hydropower more flexible and more sustainable.Novel materials have also been recently developed to increase performance,durability,and reliability;however,no systematic discussions can be found in the literature.Therefore,in this paper,novel materials for hydropower applications are presented,and their performance,advantages,and limitations are discussed.For example,composites can reduce the weight of steel equipment by 50%to 80%,polymers and superhydrophobic materials can reduce head losses by 4%to 20%,and novel bearing materials can reduce bearing wear by 6%.These improvements determine higher efficiencies,longer life span,waste reduction,and maintenance needs,although the initial cost of some materials is not yet competitive with respect to the costs of traditional materials.The novel materials are described here based on the following categories:novel materials for turbines,dams and waterways,bearings,seals,and ocean hydropower.展开更多
HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer(RM)to measure sea surface temperature,sea surface wind speed,atmospheric water vapor,cloud liquid water content,and rai...HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer(RM)to measure sea surface temperature,sea surface wind speed,atmospheric water vapor,cloud liquid water content,and rain rate.We verified the RM level 1B brightness temperature(T B)to retrieve environmental parameters.In the verification,TB that simulated using the ocean-atmosphere radiative transfer model(RTM)was used as a reference.The total bias and total standard deviation(SD)of the RM level 1B TB,with reference to the RTM simulation,ranged-20.6-4.38 K and 0.7-2.93 K,respectively.We found that both the total bias and the total SD depend on the frequency and polarization,although the values for ascending and descending passes are different.In addition,substantial seasonal variation of the bias was found at all channels.The verification results indicate the RM has some problems regarding calibration,e.g.,correction of antenna spillover and antenna physical emission,especially for the 18.7-GHz channel.Based on error analyses,a statistical recalibration algorithm was designed and recalibration was performed for the RM level 1B TB.Validation of the recalibrated TB indicated that the quality of the recalibrated RM level 1B TB was improved significantly.The bias of the recalibrated T B at all channels was reduced to<0.4 K,seasonal variation was almost eradicated,and SD was diminished(i.e.,the SD of the 18.7-GHz channel was reduced by more than 0.5K).展开更多
Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture.The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp(L.vanname...Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture.The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp(L.vannamei) were investigated.This involved an examination of growth performance,glutamate dehydrogenase(GDH) and Na+-K+ ATPase mRNA expression,,and GDH activity in muscles and gills.Three experimental diets were formulated,containing 25%,40%,and 50% dietary protein,and fed to the shrimp at a salinity of 25.After 20 days,no significant difference was observed in weight gain,though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels.Subsequently,shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5,respectively,and sampled at weeks 1 and 2.Shrimp fed with 40% protein at 25 in salinity(optimal conditions) were used as a control.Regardless of the salinities,shrimp fed with 50% dietary protein had significantly higher growth performance than other diets;no significant differences were found in comparison with the control.Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks.Ambient salinity change also stimulated the hepatosomatic index,which increased in the first week and then recovered to a relatively normal level,as in the control,after 2 weeks.These findings indicate that in white shrimp,the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism.Increased dietary protein level could improve the osmoregulation capacity of L.vannamei with more energy resources allocated to GDH activity and expression.展开更多
A homogeneous shallow-water model with free surface is used to model the tidal circulation in the Persian Gulf. The numerical finite-difference model includes harmonic diffusion of horizontal momentum and quadratic bo...A homogeneous shallow-water model with free surface is used to model the tidal circulation in the Persian Gulf. The numerical finite-difference model includes harmonic diffusion of horizontal momentum and quadratic bottom friction, it has a 9 km mesh size and it is forced by 7 tidal components at its southern boundary. High precision bathymetric data are used to obtain the bottom topography. The numerical model is run for more than a year. The results are the following: 1) The model accurately reproduces the tidal phase and amplitude observed at 42 tidal gauges in the region. This accuracy is attributed to the presence of the 7 components which are able to interact nonlinearly;2) The amphidromic points are also well positioned by the model due to a proper choice of bathymetry. This was checked also with a simpler geometry of the domain;3) The tidal currents can be strong in the Straits of Hormuz and in shallow areas;thus they will have an effect of the hydrology of the region. The residual currents are weak so that they will be negligible for the large-scale circulation on long periods;4) Finally, the sea-surface elevation forecast by the model is in close agreement with in-situ measurements of pressure in the Straits, performed during the GOGP99 experiment.展开更多
文摘The importance of this study lies in the in-depth exploration of the ecological diversity of otoliths in Elopes lacerta, based on the analysis of data from 260 individuals collected from various sites, including the Porto Novo lagoon, the Cotonou lagoon, Lake Nokou, and the Atlantic coast in southern Benin. The results highlight significant variations in otolith morphology, establishing relevant links with the biological parameters of the fish at each site. Exploration of the asymmetry between the right and left sides reveals notable distinctions between these two aspects. Analysis of otolith shape thus emerges as a valuable tool for discriminating between stocks and providing a better understanding of ecological variations. The local diversity observed highlights the crucial importance of implementing adaptive management strategies to ensure effective conservation of the species and its habitat.
基金The National 863 High-Tech Program(2004AA603610)the National Natural Science Foundation of China(30400335)the Advanced Research Program of Sino–French Cooperation(PRA BT01–03)
基金Supported by the National Natural Science Foundation of China(No.30972267)the Special Fund for Agro-scientific Research in the Public Interest Project(No.201003024)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-Q212)
文摘Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2.74 g; average weigh±SD) were reared at four different initial densities (low 0.66, medium 1.26, sub-high 2.56, high 4.00 kg/m^2) for 10 weeks in RAS at 23±1℃ Final densities were 4.67, 7.25, 14.16, and 17.47 kg/m^2, respectively, which translate to 82, 108, 214, and 282 percent coverage of the tank bottom. Density had both negative and independent impacts on growth. The final mean weight, specific growth rate (SGR), and voluntary feed intake significantly decreased and the coefficient of variation (CV) of final body weight increased with increase in stocking density. The medium and sub-high density groups did not differ significantly in SGR, mean weight, CV, food conversion rate (FCR), feed intake, blood parameters, and digestive enzymes. The protease activities of the digestive tract at pH 7, 8.5, 9, and 10 were significantly higher for the highest density group, but tended to be lower (not significantly) at pH 4 and 8.5 for the lowest density group. The intensity of protease activity was inversely related to feed intake at the different densities. Catalase activity was higher (but not significantly) at the highest density, perhaps because high density started to induce an oxidative effect in turbot. In conclusion, turbot can be cultured in RAS at a density of less than 17.47 kg/m^2. With good water quality and no feed limitation, initial density between 1.26 and 2.56 kg/m^2 (final: 7.25 and 14.16 kg/m^2) would not negatively affect the turbot cultured in RAS. For culture at higher density, multi-level feeding devices are suggested to ease feeding competition.
文摘The hydropower sector is currently experiencing several technological developments.New technologies and practices are emerging to make hydropower more flexible and more sustainable.Novel materials have also been recently developed to increase performance,durability,and reliability;however,no systematic discussions can be found in the literature.Therefore,in this paper,novel materials for hydropower applications are presented,and their performance,advantages,and limitations are discussed.For example,composites can reduce the weight of steel equipment by 50%to 80%,polymers and superhydrophobic materials can reduce head losses by 4%to 20%,and novel bearing materials can reduce bearing wear by 6%.These improvements determine higher efficiencies,longer life span,waste reduction,and maintenance needs,although the initial cost of some materials is not yet competitive with respect to the costs of traditional materials.The novel materials are described here based on the following categories:novel materials for turbines,dams and waterways,bearings,seals,and ocean hydropower.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1401001)the National Natural Science Foundation of China(Nos.41501417,41406204)
文摘HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer(RM)to measure sea surface temperature,sea surface wind speed,atmospheric water vapor,cloud liquid water content,and rain rate.We verified the RM level 1B brightness temperature(T B)to retrieve environmental parameters.In the verification,TB that simulated using the ocean-atmosphere radiative transfer model(RTM)was used as a reference.The total bias and total standard deviation(SD)of the RM level 1B TB,with reference to the RTM simulation,ranged-20.6-4.38 K and 0.7-2.93 K,respectively.We found that both the total bias and the total SD depend on the frequency and polarization,although the values for ascending and descending passes are different.In addition,substantial seasonal variation of the bias was found at all channels.The verification results indicate the RM has some problems regarding calibration,e.g.,correction of antenna spillover and antenna physical emission,especially for the 18.7-GHz channel.Based on error analyses,a statistical recalibration algorithm was designed and recalibration was performed for the RM level 1B TB.Validation of the recalibrated TB indicated that the quality of the recalibrated RM level 1B TB was improved significantly.The bias of the recalibrated T B at all channels was reduced to<0.4 K,seasonal variation was almost eradicated,and SD was diminished(i.e.,the SD of the 18.7-GHz channel was reduced by more than 0.5K).
基金Supported by the National Natural Science Foundation of China(Nos. 31001098 and 30771670)the National High Technology R&D Program (863 Program) (No. 2006BAD01A13)+5 种基金the National Basic Research Program of China (973 Program) (No. 2009CB118702)Shanghai Committee of Science and Technology,China (Nos.08DZ1906401,09ZR1409800,10JC1404100)Shanghai Agriculture Science and Technology Key Grant (No.2-1,2009)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 200802690012)partially by the E-Institute of Shanghai Municipal Education Commission (No. E03009)the Key and Open Laboratory of Marine and Estuarine Fisheries Resources and Ecology,Ministry of Agriculture
文摘Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture.The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp(L.vannamei) were investigated.This involved an examination of growth performance,glutamate dehydrogenase(GDH) and Na+-K+ ATPase mRNA expression,,and GDH activity in muscles and gills.Three experimental diets were formulated,containing 25%,40%,and 50% dietary protein,and fed to the shrimp at a salinity of 25.After 20 days,no significant difference was observed in weight gain,though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels.Subsequently,shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5,respectively,and sampled at weeks 1 and 2.Shrimp fed with 40% protein at 25 in salinity(optimal conditions) were used as a control.Regardless of the salinities,shrimp fed with 50% dietary protein had significantly higher growth performance than other diets;no significant differences were found in comparison with the control.Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks.Ambient salinity change also stimulated the hepatosomatic index,which increased in the first week and then recovered to a relatively normal level,as in the control,after 2 weeks.These findings indicate that in white shrimp,the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism.Increased dietary protein level could improve the osmoregulation capacity of L.vannamei with more energy resources allocated to GDH activity and expression.
文摘A homogeneous shallow-water model with free surface is used to model the tidal circulation in the Persian Gulf. The numerical finite-difference model includes harmonic diffusion of horizontal momentum and quadratic bottom friction, it has a 9 km mesh size and it is forced by 7 tidal components at its southern boundary. High precision bathymetric data are used to obtain the bottom topography. The numerical model is run for more than a year. The results are the following: 1) The model accurately reproduces the tidal phase and amplitude observed at 42 tidal gauges in the region. This accuracy is attributed to the presence of the 7 components which are able to interact nonlinearly;2) The amphidromic points are also well positioned by the model due to a proper choice of bathymetry. This was checked also with a simpler geometry of the domain;3) The tidal currents can be strong in the Straits of Hormuz and in shallow areas;thus they will have an effect of the hydrology of the region. The residual currents are weak so that they will be negligible for the large-scale circulation on long periods;4) Finally, the sea-surface elevation forecast by the model is in close agreement with in-situ measurements of pressure in the Straits, performed during the GOGP99 experiment.