Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by l...Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.展开更多
Background:Dihydrogen(H_(2))is produced endogenously by the intestinal microbiota through the fermentation of diet carbohydrates.Over the past few years,numer-ous studies have demonstrated the significant therapeutic ...Background:Dihydrogen(H_(2))is produced endogenously by the intestinal microbiota through the fermentation of diet carbohydrates.Over the past few years,numer-ous studies have demonstrated the significant therapeutic potential of H_(2)in various pathophysiological contexts,making the characterization of its production in labora-tory species of major preclinical importance.Methods:This study proposes an innovative solution to accurately monitor H_(2)pro-duction in free-moving rodents while respecting animal welfare standards.The devel-oped device consisted of a wire rodent cage placed inside an airtight chamber in which the air quality was maintained,and the H_(2)concentration was continuously analyzed.After the airtightness and efficiency of the systems used to control and maintain air quality in the chamber were checked,tests were carried out on rats and mice with different metabolic phenotypes,over 12 min to 1-h experiments and repeatedly.H_(2)production rates(HPR)were obtained using an easy calculation algorithm based on a first-order moving average.Results:HPR in hyperphagic Zucker rats was found to be twice as high as in control Wistar rats,respectively,2.64 and 1.27 nmol.s^(−1)per animal.In addition,the ingestion of inulin,a dietary fiber,stimulated H_(2)production in mice.HPRs were 0.46 nmol.s^(−1)for animals under control diet and 1.99 nmol.s^(−1)for animals under inulin diet.Conclusions:The proposed device coupled with our algorithm enables fine analysis of the metabolic phenotype of laboratory rats or mice with regard to their endogenous H_(2)production.展开更多
The behavior of a viscous liquid film on the wall of a rapidly rotating cylinder subjected to angular vibrations is experimentally studied.The cavity is filled with an immiscible low-viscosity liquid of lower density....The behavior of a viscous liquid film on the wall of a rapidly rotating cylinder subjected to angular vibrations is experimentally studied.The cavity is filled with an immiscible low-viscosity liquid of lower density.In the absence of vibrations,the high viscosity liquid covers the inner surface of the cylinder with a relatively thin axisymmetric film;the low-viscosity liquid is located in the cavity interior.It is found that with an increase in the amplitude of rotational vibrations,the axisymmetric interphase boundary loses stability.An azimuthally periodic 2D“frozen wave”appears on the film surface in a threshold manner.It is shown that the frozen wave excitation is associated with the oscillatory Kelvin—Helmholtz instability,and the stability threshold depends on a vibrational parameter.Two new vibrational effects in rotating cavities are studied accordingly:the stability(critical value of vibrational parameter)grows with decreasing the contrast in liquids viscosity;the rotation(the Coriolis force)stabilizes the interface–the critical value of vibrational parameter grows with the dimensionless rotation rate,the threshold is characterized by the product of the aforementioned vibrational parameter and the dimensionless rotation rate to some power.The discovered phenomena can be useful for vibrational control of interfaces in many technological processes,especially in the field of materials science.展开更多
The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.I...The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries.展开更多
Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission ...Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission from plasma even at elevated pressures,where line broadening until loss of most of the spectral information can occur.Optical emission spectroscopy,using a Czerny-Turner spectrometer,has been applied to investigate the dependence of the emitted radiation on laser parameters and hydrostatic pressure.It has been found,that higher laser pulse energies,especially with short pulse delay as required in high water pressure,can also have an adverse effect on the measured spectrum.展开更多
Droughts that occurred in selected areas located in homogeneous regions of South America during the austral springs(SON)and summers(DJF)from 1982 to 2019 are identified using the Standard Precipitation Index(SPI).Four...Droughts that occurred in selected areas located in homogeneous regions of South America during the austral springs(SON)and summers(DJF)from 1982 to 2019 are identified using the Standard Precipitation Index(SPI).Four areas were analyzed for droughts in SON,and three areas were analyzed for droughts in DJF.The areas in the Amazon suffered from the majority of their droughts during El Niño years,while most of the droughts in the areas of southern Brazil,Uruguay,and North Argentina occurred during La Niña years.In southeastern and central-western parts of Brazil,droughts occurred during both phases of El Nino-Southern Oscillation(ENSO)and also during neutral years.Thus,other processes besides ENSO are likely related to the observed droughts.The droughts were investigated for each area and month,and composites of atmospheric and oceanic variables during both seasons were analyzed for the selected cases.Regional and large-scale field composites were examined to identify the main processes associated with dry conditions in the different areas.Regional features were related to the influence of high pressure over southern and southeastern areas and the divergence of moisture flux in all areas.Meridional circulations contributed to subsidence over the dry regions.The large-scale influential features include SST anomalies,wavetrains over the South Pacific Ocean with centers of action over South America that produced subsidence in the study areas,and convection anomalies in the Maritime continent and surrounding areas.Therefore,the droughts were associated with a combination of regional and large-scale features that produced subsidence over the analyzed regions.展开更多
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as...Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as clouds can cause partial shading, excessive irradiation, and operational issues. This study focuses on analyzing cloud tracking methods for short-term forecasts, aiming to mitigate such impacts. We conducted a systematic literature review, highlighting the most significant articles on cloud tracking from ground-based observations. We explore both traditional image processing techniques and advances in deep learning models. Additionally, we discuss current challenges and future research directions in this rapidly evolving field, aiming to provide a comprehensive overview of the state of the art and identify opportunities for significant advancements in the next generation of cloud tracking systems based on computer vision and deep learning.展开更多
Refractories have unique capabilities such as sustaining their shape and properties at extreme conditions such as the combination of high temperatures and thermal shock,contact with molten metals and slags and in some...Refractories have unique capabilities such as sustaining their shape and properties at extreme conditions such as the combination of high temperatures and thermal shock,contact with molten metals and slags and in some circumstances resistance to erosion from abrasive particles.Given the large processing output of the heavy industries such as the cement and steel ones which both require high temperature processes,the refractories structures span various meters and weight of several tons.As the water removal stage of hydraulic bonded castables in industrial sites takes hours(10-60 h)due to the risk of explosive spalling,efforts to mitigate it are commonly studied.This has provided theoretical understanding of the general aspects of drying and important tools,such as the thermogravimetry analysis(TGA),for the design of refractory compositions with higher explosive spalling resistance.However,the optimization of this process is still far from the industrial reality especially because the actual linings that require the drying are orders of magnitude larger than the samples considered in the laboratory tests.Therefore,this study proposed the analysis of the sample volume effect on the water removal dynamics through TGA of high alumina castables with calcium aluminate cement.Conventionalφ5 cm×5 cm cylindrical samples were assessed in a laboratory scale equipment whereas macro TGA were carried out considering 20 cm×20 cm×20 cm and 30 cm×30 cm×30 cm cubic samples.Additionally,the effect of polymeric fibers was also considered.It was found out that the different thermal gradients within the macro TGA samples resulted in an inflection on the sample’s heating rate and that the mass loss was affected by the volume considered,especially for the composition without additives.These findings highlight the requirement of carefully taking into consideration the different dimensional sizes and thermal gradients in the samples when analyzing and interpreting the laboratory studies,and especially when trying to extrapolate such results to the industrial reality.展开更多
BACKGROUND The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent.The gut microbiota contributes to colorectal carcinogenesis(CRC),as demonstrated with colibactin...BACKGROUND The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent.The gut microbiota contributes to colorectal carcinogenesis(CRC),as demonstrated with colibactin-producing Escherichia coli(CoPEC).AIM To evaluate the association between CoPEC prevalence and anxiety-and depressive-like behaviors with both preclinical and clinical approaches.METHODS Patients followed after a CRC surgery and for whom the prevalence of CoPEC has been investigated underwent a psychiatric interview.Results were compared according to the CoPEC colonization.In parallel C57BL6/J wild type mice and mice with a CRC susceptibility were chronically infected with a CoPEC strain.Their behavior was assessed using the Elevated Plus Maze test,the Forced Swimming Test and the Behavior recognition system PhenoTyper®.RESULTS In a limited cohort,all patients with CoPEC colonization presented with psychiatric disorders several years before cancer diagnosis,whereas only one patient(17%)without CoPEC did.This result was confirmed in C57BL6/J wildtype mice and in a CRC susceptibility mouse model(adenomatous polyposis colimultiple intestinal neoplasia/+).Mice exhibited a significant increase in anxiety-and depressive-like behaviors after chronic infection with a CoPEC strain.CONCLUSION This finding provides the first evidence that CoPEC infection can induce microbiota-gut-brain axis disturbances in addition to its procarcinogenic properties.展开更多
Carbon-supported platinum nanoparticles(Pt/C)are widely used electrocatalysts in proton exchange membrane fuel cell and electrolyzer applications and represent a substantial part of the capital expenditure of these de...Carbon-supported platinum nanoparticles(Pt/C)are widely used electrocatalysts in proton exchange membrane fuel cell and electrolyzer applications and represent a substantial part of the capital expenditure of these devices.Platinum being a critical raw material,its recovery is critical for the deployment of these technologies.In this contribution,the first step of a recycling protocol,i.e.the leaching of Pt/C,is studied.To avoid the use of concentrated acids and oxidants,the focus of the present study is on the design of an efficient electrochemical protocol.In particular,the values of the upper and lower potential limits have an impact on Pt dissolution efficiency.The upper potential limit should avoid(or at least limit)Pt particles'detachment from the carbon support and the lower potential limit should take into account the competition between the platinum dissolution and the unwanted platinum redeposition.The evolution of the particle morphology and dissolution rate were monitored by coupling a statistical analysis of TEM images and ICP-MS concentration measurements.The cycling potential window was first optimized for a model commercial Pt/C catalyst in a low-chloride concentration electrolyte,leading to a full Pt leaching efficiency(99%).A similar protocol was transferred to more technological objects:MEA aged under realistic conditions.The MEAs were electrochemically treated without any prior GDL separation and the efficiency of the process was demonstrated.展开更多
This focused issue of the Communications on Applied Mathematics and Computation is in Honour of Prof.Rémi Abgrall on the Occasion of His 61th Birthday.Rémi Abgrall has been a student in mathematics(1981–198...This focused issue of the Communications on Applied Mathematics and Computation is in Honour of Prof.Rémi Abgrall on the Occasion of His 61th Birthday.Rémi Abgrall has been a student in mathematics(1981–1985)of Ecole Normale Supérieure de Saint Cloud(now part of ENS Lyon).After his studies in pure mathematics,he changed orientation tofluid mechanics.He did his PhD at the Laboratoire de Météorologie Dynamique(LMD)at Ecole Normale Supérieure under the supervision of Claude Basdevant.He graduated in December 1987 with a thesis on a semi-Lagrangian model of 2D turbulence,refereed by Olivier Pironneau and Marcel Lesieur.展开更多
This study assesses the projected changes in the climate zoning of Côte d’Ivoire using the hierarchical classification of principal components (HCPC) method applied to the daily precipitation data of an ensemble...This study assesses the projected changes in the climate zoning of Côte d’Ivoire using the hierarchical classification of principal components (HCPC) method applied to the daily precipitation data of an ensemble of 14 CORDEX-AFRICA simulations under RCP4.5 and RCP8.5 scenarios. The results indicate the existence of three climate zones in Côte d’Ivoire (the coastal, the centre and the north) over the historical period (1981-2005). Moreover, CORDEX simulations project an extension of the surface area of drier climatic zones while a reduction of wetter zones, associated with the appearance of an intermediate climate zone with surface area varying from 77,560 km<sup>2</sup> to 134,960 km<sup>2</sup> depending on the period and the scenario. These results highlight the potential impacts of climate change on the delimitation of the climate zones of Côte d’Ivoire under the greenhouse gas emission scenarios. Thus, there is a reduction in the surface areas suitable for the production of cash crops such as cocoa and coffee. This could hinder the country’s economy and development, mainly based on these cash crops.展开更多
The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability...The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel.展开更多
The chemical and electrochemical stability of lanthanide nickelates La2 NiO4+δ(LNO),Pr2 NiO4+δ(PNO)and their mixed compounds La(2-x)PrxNiO4+δ(LPNOs)with x=0.5,1 or 1.5 is reported.The aim is to promote these materi...The chemical and electrochemical stability of lanthanide nickelates La2 NiO4+δ(LNO),Pr2 NiO4+δ(PNO)and their mixed compounds La(2-x)PrxNiO4+δ(LPNOs)with x=0.5,1 or 1.5 is reported.The aim is to promote these materials as efficient electrodes for solid oxide fuel cell(SOFC)and/or solid oxide electrolysis cell(SOEC).La2 NiO4+δand La1.5Pr0.5NiO4+δcompounds are chemically very stable as powders over one month in the temperature range 600-800℃,while the other materials rich in praseodymium progressively decompose into various perovskite-deriving components with additional Pr6 O11.Despite their uneven properties,all these materials are quite efficient and sustainable as electrodes on top of gadolinium doped ceria(GDCBL)//yttrium doped zirconia(8 YSZ)electrolyte,for one month at 700℃without polarization.Under polarization(300 mA·cm-2),the electrochemical performances of LNO,PNO and La1.5Pr0.5NiO4+δ(LP5 NO)quickly degrade in SOFC mode,i.e.for the oxygen reduction reaction,while they show durability in SOEC mode,i.e.for the oxide oxidation reaction.展开更多
The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium spec...The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations.展开更多
The present study focuses on the impacts of extreme drought and flooding situations in Amazonia, using level/discharge data from some rivers in the Amazon region as indicators of impacts. The last 10 years have featur...The present study focuses on the impacts of extreme drought and flooding situations in Amazonia, using level/discharge data from some rivers in the Amazon region as indicators of impacts. The last 10 years have featured various “once in a century” droughts and floods in the Amazon basin, which have affected human and natural systems in the region. We assess a history of such hazards based on river data, and discuss some of the observed impacts in terms of vulnerability of human and natural systems, as well as some of adaptation strategies implemented by regional and local governments to cope with them. A critical perspective of mitigation of drought and flood policies in Amazonia suggests that they have been mostly ineffective in reducing vulnerability for the majority of the population, constituting, perhaps, examples of maladaptation via the undermining of resilience.展开更多
Projections of climate change are essential to guide sustainable development plans in the tropical Andean countries such as Peru. This study assessed the projections of precipitation and potential evaporation, rain er...Projections of climate change are essential to guide sustainable development plans in the tropical Andean countries such as Peru. This study assessed the projections of precipitation and potential evaporation, rain erosive potential, and precipitation concentration in the Mantaro River Basin, in the Peruvian Andes, which is important for agriculture and energy production in Peru. We assumed the Intergovernmental Panel on Climate Change (IPCC) AIB greenhouse gas emission scenario and simulated the global climate change by the HadCM3 global climate model. Due to the steepness of the mountain slopes and the narrowness of the river valley, this study uses the downscaling of the global model simulations by the regional Eta model down to 2o-km resolution. The downscaling projections show decrease in the monthly precipitation with respect to the baseline period, especially during the rainy season, between February and April, until the end of the 21st century. Meanwhile, a progressive increase in the monthly evaporation from the baseline period is projected. The Modified Fournier Index (MFI) shows a statistically significant downward trend in the Mantaro River Basin, whieh suggests a possible reduction in the rain erosive potential. The Precipitation Concentration Index (PCI) shows a statistically significant increasing trend, which indicates increasingly more irregular temporal distribution of precipitation towards the end of the century. The results of this study allow us to conclude that there should be a gradual increase in water deficit and precipitation concentration. Both changes can be negative for agriculture, power generation, and water supply in the Mantaro River Basin in Peru.展开更多
Correlation lengths of ultra-low-frequency(ULF)waves around Mars were computed for the first time,using data from MEX(electron density from 2004 to 2015)and MAVEN(electron density and magnetic field from 2014 to 2016)...Correlation lengths of ultra-low-frequency(ULF)waves around Mars were computed for the first time,using data from MEX(electron density from 2004 to 2015)and MAVEN(electron density and magnetic field from 2014 to 2016).Analysis of the MEX data found that,for the frequency range 8 to 50 mHz,correlation length in electron density varied between 13 and 17 seconds(temporal scale)and between 5.5×10^3 km and 6.8×10^3 km(spatial scale).For the MAVEN time interval,correlation length was found to vary between 11 and 16 seconds(temporal scale)and 2×10^3–4.5×10^3 km in spatial scale.In the magnetic field data,correlation lengths are observed to be between 8–15 seconds(temporal scale)and between 1×10^3 and 5×10^3 km(spatial scale)over the same frequency range.We observe that the cross sections of the plasma regions at the dayside of Mars are smaller than these correlation lengths in these regions in both analyses,where the correlation length derived from the MEX electron density data was between 5 and 25 times the size of the magnetosheath and the magnetic pile-up region(MPR),respectively.For MAVEN these ratios are about 4(magnetosheath)and 11(MPR)in electron density and between 1.5 and 5.5 for magnetic field data,respectively.These results indicate that waves at the magnetosheath/MPR can be related to oscillations in the upper ionosphere.In a local region,wave trains may cause resonance effects at the planetary ionopause,which consequently contributes to the enhanced ion escape from the atmosphere.展开更多
基金supported by the NSFC (42374204, 42004143,42364012)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences (Grant No.YSBR-018)+3 种基金the Scientific Projects of Hainan Province(KJRC2023C05, ZDYF2021GXJS040)the Innovational Fund for Scientific and Technological Personnel of Hainan Provincethe Chinese Meridian ProjectPandeng Program of National Space Science Center,Chinese Academy of Sciences
文摘Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.
基金UniversitéGrenoble Alpes through the Cross Disciplinary Program(CDTools)“My Health Companions”.
文摘Background:Dihydrogen(H_(2))is produced endogenously by the intestinal microbiota through the fermentation of diet carbohydrates.Over the past few years,numer-ous studies have demonstrated the significant therapeutic potential of H_(2)in various pathophysiological contexts,making the characterization of its production in labora-tory species of major preclinical importance.Methods:This study proposes an innovative solution to accurately monitor H_(2)pro-duction in free-moving rodents while respecting animal welfare standards.The devel-oped device consisted of a wire rodent cage placed inside an airtight chamber in which the air quality was maintained,and the H_(2)concentration was continuously analyzed.After the airtightness and efficiency of the systems used to control and maintain air quality in the chamber were checked,tests were carried out on rats and mice with different metabolic phenotypes,over 12 min to 1-h experiments and repeatedly.H_(2)production rates(HPR)were obtained using an easy calculation algorithm based on a first-order moving average.Results:HPR in hyperphagic Zucker rats was found to be twice as high as in control Wistar rats,respectively,2.64 and 1.27 nmol.s^(−1)per animal.In addition,the ingestion of inulin,a dietary fiber,stimulated H_(2)production in mice.HPRs were 0.46 nmol.s^(−1)for animals under control diet and 1.99 nmol.s^(−1)for animals under inulin diet.Conclusions:The proposed device coupled with our algorithm enables fine analysis of the metabolic phenotype of laboratory rats or mice with regard to their endogenous H_(2)production.
基金Victor Kozlov and Alsu Zimasova were financially supported by the Russian Science Foundation(Project 23-11-00242),Nikolai Kozlov had no specific support.
文摘The behavior of a viscous liquid film on the wall of a rapidly rotating cylinder subjected to angular vibrations is experimentally studied.The cavity is filled with an immiscible low-viscosity liquid of lower density.In the absence of vibrations,the high viscosity liquid covers the inner surface of the cylinder with a relatively thin axisymmetric film;the low-viscosity liquid is located in the cavity interior.It is found that with an increase in the amplitude of rotational vibrations,the axisymmetric interphase boundary loses stability.An azimuthally periodic 2D“frozen wave”appears on the film surface in a threshold manner.It is shown that the frozen wave excitation is associated with the oscillatory Kelvin—Helmholtz instability,and the stability threshold depends on a vibrational parameter.Two new vibrational effects in rotating cavities are studied accordingly:the stability(critical value of vibrational parameter)grows with decreasing the contrast in liquids viscosity;the rotation(the Coriolis force)stabilizes the interface–the critical value of vibrational parameter grows with the dimensionless rotation rate,the threshold is characterized by the product of the aforementioned vibrational parameter and the dimensionless rotation rate to some power.The discovered phenomena can be useful for vibrational control of interfaces in many technological processes,especially in the field of materials science.
基金financially supported by the Russian Science Foundation(Project 23-11-00242).
文摘The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)–Project No.454848899。
文摘Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission from plasma even at elevated pressures,where line broadening until loss of most of the spectral information can occur.Optical emission spectroscopy,using a Czerny-Turner spectrometer,has been applied to investigate the dependence of the emitted radiation on laser parameters and hydrostatic pressure.It has been found,that higher laser pulse energies,especially with short pulse delay as required in high water pressure,can also have an adverse effect on the measured spectrum.
基金Support Foundation(FAPESP)/Belmont Forum-CLIMAX-2015-50687-8Coordination for the Improvement of Higher Education Personnel(CAPES)-88887145932/2017-01+3 种基金CAPES-project88882.330673/2019-01the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)project306393/2018-2 and GVM thanks the National Agency for Scientific and Technological Promotion(ANPCyT)projects PICT-2019-2019-03982 and PICT-2019-2019-00481National University of the Litoral(UNL)project CAI+D-2020-50620190100082LINational Council for Scientific and Technical Research(CONICET)project PIP 11220200102257CO.
文摘Droughts that occurred in selected areas located in homogeneous regions of South America during the austral springs(SON)and summers(DJF)from 1982 to 2019 are identified using the Standard Precipitation Index(SPI).Four areas were analyzed for droughts in SON,and three areas were analyzed for droughts in DJF.The areas in the Amazon suffered from the majority of their droughts during El Niño years,while most of the droughts in the areas of southern Brazil,Uruguay,and North Argentina occurred during La Niña years.In southeastern and central-western parts of Brazil,droughts occurred during both phases of El Nino-Southern Oscillation(ENSO)and also during neutral years.Thus,other processes besides ENSO are likely related to the observed droughts.The droughts were investigated for each area and month,and composites of atmospheric and oceanic variables during both seasons were analyzed for the selected cases.Regional and large-scale field composites were examined to identify the main processes associated with dry conditions in the different areas.Regional features were related to the influence of high pressure over southern and southeastern areas and the divergence of moisture flux in all areas.Meridional circulations contributed to subsidence over the dry regions.The large-scale influential features include SST anomalies,wavetrains over the South Pacific Ocean with centers of action over South America that produced subsidence in the study areas,and convection anomalies in the Maritime continent and surrounding areas.Therefore,the droughts were associated with a combination of regional and large-scale features that produced subsidence over the analyzed regions.
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
文摘Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as clouds can cause partial shading, excessive irradiation, and operational issues. This study focuses on analyzing cloud tracking methods for short-term forecasts, aiming to mitigate such impacts. We conducted a systematic literature review, highlighting the most significant articles on cloud tracking from ground-based observations. We explore both traditional image processing techniques and advances in deep learning models. Additionally, we discuss current challenges and future research directions in this rapidly evolving field, aiming to provide a comprehensive overview of the state of the art and identify opportunities for significant advancements in the next generation of cloud tracking systems based on computer vision and deep learning.
基金the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil(CAPES)-Finance Code 001.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP(grant number:2021/00251-0).Finally,the authors are also greatly thankful for FIRE support to carry out this work.
文摘Refractories have unique capabilities such as sustaining their shape and properties at extreme conditions such as the combination of high temperatures and thermal shock,contact with molten metals and slags and in some circumstances resistance to erosion from abrasive particles.Given the large processing output of the heavy industries such as the cement and steel ones which both require high temperature processes,the refractories structures span various meters and weight of several tons.As the water removal stage of hydraulic bonded castables in industrial sites takes hours(10-60 h)due to the risk of explosive spalling,efforts to mitigate it are commonly studied.This has provided theoretical understanding of the general aspects of drying and important tools,such as the thermogravimetry analysis(TGA),for the design of refractory compositions with higher explosive spalling resistance.However,the optimization of this process is still far from the industrial reality especially because the actual linings that require the drying are orders of magnitude larger than the samples considered in the laboratory tests.Therefore,this study proposed the analysis of the sample volume effect on the water removal dynamics through TGA of high alumina castables with calcium aluminate cement.Conventionalφ5 cm×5 cm cylindrical samples were assessed in a laboratory scale equipment whereas macro TGA were carried out considering 20 cm×20 cm×20 cm and 30 cm×30 cm×30 cm cubic samples.Additionally,the effect of polymeric fibers was also considered.It was found out that the different thermal gradients within the macro TGA samples resulted in an inflection on the sample’s heating rate and that the mass loss was affected by the volume considered,especially for the composition without additives.These findings highlight the requirement of carefully taking into consideration the different dimensional sizes and thermal gradients in the samples when analyzing and interpreting the laboratory studies,and especially when trying to extrapolate such results to the industrial reality.
基金Supported by the French patient’s association against cancer(ligue contre le cancer),No.00001005238the French government IDEXISITE initiative,No.16-IDEX-0001-CAP 20-25+2 种基金CPER(Nex-N-Mob)the Auvergne-Rhône-Alpes region(“Thématiquesémergentes”),No.AV0004111the Ministère de l'Enseignement supérieur,de la Recherche et de l'Innovation,INSERM,University of Clermont Auvergne[UMR1071,UMR1107],INRAE[USC-1382].
文摘BACKGROUND The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent.The gut microbiota contributes to colorectal carcinogenesis(CRC),as demonstrated with colibactin-producing Escherichia coli(CoPEC).AIM To evaluate the association between CoPEC prevalence and anxiety-and depressive-like behaviors with both preclinical and clinical approaches.METHODS Patients followed after a CRC surgery and for whom the prevalence of CoPEC has been investigated underwent a psychiatric interview.Results were compared according to the CoPEC colonization.In parallel C57BL6/J wild type mice and mice with a CRC susceptibility were chronically infected with a CoPEC strain.Their behavior was assessed using the Elevated Plus Maze test,the Forced Swimming Test and the Behavior recognition system PhenoTyper®.RESULTS In a limited cohort,all patients with CoPEC colonization presented with psychiatric disorders several years before cancer diagnosis,whereas only one patient(17%)without CoPEC did.This result was confirmed in C57BL6/J wildtype mice and in a CRC susceptibility mouse model(adenomatous polyposis colimultiple intestinal neoplasia/+).Mice exhibited a significant increase in anxiety-and depressive-like behaviors after chronic infection with a CoPEC strain.CONCLUSION This finding provides the first evidence that CoPEC infection can induce microbiota-gut-brain axis disturbances in addition to its procarcinogenic properties.
文摘Carbon-supported platinum nanoparticles(Pt/C)are widely used electrocatalysts in proton exchange membrane fuel cell and electrolyzer applications and represent a substantial part of the capital expenditure of these devices.Platinum being a critical raw material,its recovery is critical for the deployment of these technologies.In this contribution,the first step of a recycling protocol,i.e.the leaching of Pt/C,is studied.To avoid the use of concentrated acids and oxidants,the focus of the present study is on the design of an efficient electrochemical protocol.In particular,the values of the upper and lower potential limits have an impact on Pt dissolution efficiency.The upper potential limit should avoid(or at least limit)Pt particles'detachment from the carbon support and the lower potential limit should take into account the competition between the platinum dissolution and the unwanted platinum redeposition.The evolution of the particle morphology and dissolution rate were monitored by coupling a statistical analysis of TEM images and ICP-MS concentration measurements.The cycling potential window was first optimized for a model commercial Pt/C catalyst in a low-chloride concentration electrolyte,leading to a full Pt leaching efficiency(99%).A similar protocol was transferred to more technological objects:MEA aged under realistic conditions.The MEAs were electrochemically treated without any prior GDL separation and the efficiency of the process was demonstrated.
文摘This focused issue of the Communications on Applied Mathematics and Computation is in Honour of Prof.Rémi Abgrall on the Occasion of His 61th Birthday.Rémi Abgrall has been a student in mathematics(1981–1985)of Ecole Normale Supérieure de Saint Cloud(now part of ENS Lyon).After his studies in pure mathematics,he changed orientation tofluid mechanics.He did his PhD at the Laboratoire de Météorologie Dynamique(LMD)at Ecole Normale Supérieure under the supervision of Claude Basdevant.He graduated in December 1987 with a thesis on a semi-Lagrangian model of 2D turbulence,refereed by Olivier Pironneau and Marcel Lesieur.
文摘This study assesses the projected changes in the climate zoning of Côte d’Ivoire using the hierarchical classification of principal components (HCPC) method applied to the daily precipitation data of an ensemble of 14 CORDEX-AFRICA simulations under RCP4.5 and RCP8.5 scenarios. The results indicate the existence of three climate zones in Côte d’Ivoire (the coastal, the centre and the north) over the historical period (1981-2005). Moreover, CORDEX simulations project an extension of the surface area of drier climatic zones while a reduction of wetter zones, associated with the appearance of an intermediate climate zone with surface area varying from 77,560 km<sup>2</sup> to 134,960 km<sup>2</sup> depending on the period and the scenario. These results highlight the potential impacts of climate change on the delimitation of the climate zones of Côte d’Ivoire under the greenhouse gas emission scenarios. Thus, there is a reduction in the surface areas suitable for the production of cash crops such as cocoa and coffee. This could hinder the country’s economy and development, mainly based on these cash crops.
文摘The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel.
基金PEREN project(reference:ANR-2011-PREG-016–05)the ECOREVE project(reference:ANR-18-CE05-0036-01)the Agence Nationale de la Recherche(A.N.R.,France)for supporting these scientific works and for the financial support。
文摘The chemical and electrochemical stability of lanthanide nickelates La2 NiO4+δ(LNO),Pr2 NiO4+δ(PNO)and their mixed compounds La(2-x)PrxNiO4+δ(LPNOs)with x=0.5,1 or 1.5 is reported.The aim is to promote these materials as efficient electrodes for solid oxide fuel cell(SOFC)and/or solid oxide electrolysis cell(SOEC).La2 NiO4+δand La1.5Pr0.5NiO4+δcompounds are chemically very stable as powders over one month in the temperature range 600-800℃,while the other materials rich in praseodymium progressively decompose into various perovskite-deriving components with additional Pr6 O11.Despite their uneven properties,all these materials are quite efficient and sustainable as electrodes on top of gadolinium doped ceria(GDCBL)//yttrium doped zirconia(8 YSZ)electrolyte,for one month at 700℃without polarization.Under polarization(300 mA·cm-2),the electrochemical performances of LNO,PNO and La1.5Pr0.5NiO4+δ(LP5 NO)quickly degrade in SOFC mode,i.e.for the oxygen reduction reaction,while they show durability in SOEC mode,i.e.for the oxide oxidation reaction.
基金financial support from the French National Research Agency(project ANR-17-CE05-0023)。
文摘The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations.
文摘The present study focuses on the impacts of extreme drought and flooding situations in Amazonia, using level/discharge data from some rivers in the Amazon region as indicators of impacts. The last 10 years have featured various “once in a century” droughts and floods in the Amazon basin, which have affected human and natural systems in the region. We assess a history of such hazards based on river data, and discuss some of the observed impacts in terms of vulnerability of human and natural systems, as well as some of adaptation strategies implemented by regional and local governments to cope with them. A critical perspective of mitigation of drought and flood policies in Amazonia suggests that they have been mostly ineffective in reducing vulnerability for the majority of the population, constituting, perhaps, examples of maladaptation via the undermining of resilience.
基金FAPEMIG (PPM X 45-16)CNPqpartially funded by CNPq 308035/2013-5
文摘Projections of climate change are essential to guide sustainable development plans in the tropical Andean countries such as Peru. This study assessed the projections of precipitation and potential evaporation, rain erosive potential, and precipitation concentration in the Mantaro River Basin, in the Peruvian Andes, which is important for agriculture and energy production in Peru. We assumed the Intergovernmental Panel on Climate Change (IPCC) AIB greenhouse gas emission scenario and simulated the global climate change by the HadCM3 global climate model. Due to the steepness of the mountain slopes and the narrowness of the river valley, this study uses the downscaling of the global model simulations by the regional Eta model down to 2o-km resolution. The downscaling projections show decrease in the monthly precipitation with respect to the baseline period, especially during the rainy season, between February and April, until the end of the 21st century. Meanwhile, a progressive increase in the monthly evaporation from the baseline period is projected. The Modified Fournier Index (MFI) shows a statistically significant downward trend in the Mantaro River Basin, whieh suggests a possible reduction in the rain erosive potential. The Precipitation Concentration Index (PCI) shows a statistically significant increasing trend, which indicates increasingly more irregular temporal distribution of precipitation towards the end of the century. The results of this study allow us to conclude that there should be a gradual increase in water deficit and precipitation concentration. Both changes can be negative for agriculture, power generation, and water supply in the Mantaro River Basin in Peru.
基金FAPESP agency for support (projects 2016/10794-2 and 2017/00516-8)FAPESP (2018/21657-1) agencies+1 种基金supported by FAPEG (grant no. 201210267000905)CNPq (grants no. 302330/2015-1),CNPq (project CNPq/PQ 302583/20157)
文摘Correlation lengths of ultra-low-frequency(ULF)waves around Mars were computed for the first time,using data from MEX(electron density from 2004 to 2015)and MAVEN(electron density and magnetic field from 2014 to 2016).Analysis of the MEX data found that,for the frequency range 8 to 50 mHz,correlation length in electron density varied between 13 and 17 seconds(temporal scale)and between 5.5×10^3 km and 6.8×10^3 km(spatial scale).For the MAVEN time interval,correlation length was found to vary between 11 and 16 seconds(temporal scale)and 2×10^3–4.5×10^3 km in spatial scale.In the magnetic field data,correlation lengths are observed to be between 8–15 seconds(temporal scale)and between 1×10^3 and 5×10^3 km(spatial scale)over the same frequency range.We observe that the cross sections of the plasma regions at the dayside of Mars are smaller than these correlation lengths in these regions in both analyses,where the correlation length derived from the MEX electron density data was between 5 and 25 times the size of the magnetosheath and the magnetic pile-up region(MPR),respectively.For MAVEN these ratios are about 4(magnetosheath)and 11(MPR)in electron density and between 1.5 and 5.5 for magnetic field data,respectively.These results indicate that waves at the magnetosheath/MPR can be related to oscillations in the upper ionosphere.In a local region,wave trains may cause resonance effects at the planetary ionopause,which consequently contributes to the enhanced ion escape from the atmosphere.