AIM: To determine the diagnostic value of the rabeprazole test in patients seen by general practitioners. METHODS: Eighty-three patients with symptoms suggestive of GERD were enrolled by general practitioners in thi...AIM: To determine the diagnostic value of the rabeprazole test in patients seen by general practitioners. METHODS: Eighty-three patients with symptoms suggestive of GERD were enrolled by general practitioners in this multi-centre, randomized and doubleblind study. All patients received either rabeprazole (20 mg bid) or a placebo for one week. The diagnosis of GERD was established on the presence of mucosal breaks at endoscopy and/or an abnormal esophageal 24-h pH test. The test was considered to be positive if patients reported at least a "clear improvement" of symptoms on a 7-point Likert scale. RESULTS: The sensitivities of the test for rabeprazole and the placebo were 83% and 40%, respectively. The corresponding specificity, positive and negative predictive values were 45% and 67%, 71% and 71%, and 62% and 35%, respectively. A receiver operating characteristics (ROC) analysis confirmed that the best discriminatory cut-off corresponded to description of "clear improvement" CONCLUSION: The poor specificity of the proton-pump inhibitor (PPI) test does not support such an approach to establish a diagnosis of GERD in a primary care setting.展开更多
Digital imaging techniques have enabled to gain insight into complex structure-functional processes involved in the neo-cortex maturation and in brain development, already recognized in anatomical and histological pre...Digital imaging techniques have enabled to gain insight into complex structure-functional processes involved in the neo-cortex maturation and in brain development, already recognized in anatomical and histological preparations. Despite such a refined technical progress most diagnostic records sound still elusive and unreliable because of use of conventional morphometric approaches based on a unique scale of measure, inadequate for investigating irregular cellular components and structures which shape nervous and brain tissues. Instead, these could be efficiently analyzed by adopting principles and methodologies derived from the Fractal Geometry. Through his masterpiece, The Fractal Geometry of Nature [1], Benoît Mandelbrot has provided a novel epistemological framework for interpreting the real life and the natural world as they are, preventing whatever approximation or subjective sight. Founded upon a body of well-defined laws and coherent principles, the Fractal Geometry is a powerful tool for recognizing and quantitatively describing a good many kinds of complex shapes, living forms, organized patterns, and morphologic features long range correlated with a broad network of functional interactions and metabolic processes that contribute to building up adaptive responses making life sustainable. Scale free dynamics characterized biological systems which develop through the iteration of single generators on different scales thus preserving proper self-similar traits. In the last decades several studies have contributed to showing how relevant may be the recognition of fractal properties for a better understanding of brain and nervous tissues either in healthy conditions or in altered and pathological states.展开更多
This paper presents a study on the cracking of steel pieces during their galvanization in alloyed liquid zinc. An experimental design was developed to show the effect of the amount of the various alloying elements (Sn...This paper presents a study on the cracking of steel pieces during their galvanization in alloyed liquid zinc. An experimental design was developed to show the effect of the amount of the various alloying elements (Sn, Bi, Pb) on this phenomenon. The characterization of the effect was obtained by 1) deformation by three-point bending of a piece of steel with different levels of deflection;2) galvanizing and 3) observation and measurement of the cracks. A model of the critical deflection (deflection for crack starting) with the amounts of Sn, Pb, and Bi is presented and the predictions are described.展开更多
We have investigated the Nu Calm Transcutaneous Vagus Nerve Stimulation device of the NuCalm Solace Lifesciences founding that it gives a multifractal output. A diminishing fractal/multifractal HRV is consistently rep...We have investigated the Nu Calm Transcutaneous Vagus Nerve Stimulation device of the NuCalm Solace Lifesciences founding that it gives a multifractal output. A diminishing fractal/multifractal HRV is consistently reported in literature as related to a serious Autonomic Nervous System (ANS) dysfunction that of course we observe in several psychological and psychiatric disorders. Therefore, we suggest the investigators to apply such a device in subjects affected from anxiety, depression and stress using the method of inducing tVNS stimulation.展开更多
In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ...In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometers large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances almost equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks are resulted from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that(1) centimetric to kilometric PFS are resulted from the dramatic increase of L during compaction and(2), this process involves agglomerates with 100 μm to 1 mm size.展开更多
In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be rep...In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020 s.展开更多
In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive bl...In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced "spectral-timing-polarimetry" techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.展开更多
In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting wh...In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.展开更多
文摘AIM: To determine the diagnostic value of the rabeprazole test in patients seen by general practitioners. METHODS: Eighty-three patients with symptoms suggestive of GERD were enrolled by general practitioners in this multi-centre, randomized and doubleblind study. All patients received either rabeprazole (20 mg bid) or a placebo for one week. The diagnosis of GERD was established on the presence of mucosal breaks at endoscopy and/or an abnormal esophageal 24-h pH test. The test was considered to be positive if patients reported at least a "clear improvement" of symptoms on a 7-point Likert scale. RESULTS: The sensitivities of the test for rabeprazole and the placebo were 83% and 40%, respectively. The corresponding specificity, positive and negative predictive values were 45% and 67%, 71% and 71%, and 62% and 35%, respectively. A receiver operating characteristics (ROC) analysis confirmed that the best discriminatory cut-off corresponded to description of "clear improvement" CONCLUSION: The poor specificity of the proton-pump inhibitor (PPI) test does not support such an approach to establish a diagnosis of GERD in a primary care setting.
文摘Digital imaging techniques have enabled to gain insight into complex structure-functional processes involved in the neo-cortex maturation and in brain development, already recognized in anatomical and histological preparations. Despite such a refined technical progress most diagnostic records sound still elusive and unreliable because of use of conventional morphometric approaches based on a unique scale of measure, inadequate for investigating irregular cellular components and structures which shape nervous and brain tissues. Instead, these could be efficiently analyzed by adopting principles and methodologies derived from the Fractal Geometry. Through his masterpiece, The Fractal Geometry of Nature [1], Benoît Mandelbrot has provided a novel epistemological framework for interpreting the real life and the natural world as they are, preventing whatever approximation or subjective sight. Founded upon a body of well-defined laws and coherent principles, the Fractal Geometry is a powerful tool for recognizing and quantitatively describing a good many kinds of complex shapes, living forms, organized patterns, and morphologic features long range correlated with a broad network of functional interactions and metabolic processes that contribute to building up adaptive responses making life sustainable. Scale free dynamics characterized biological systems which develop through the iteration of single generators on different scales thus preserving proper self-similar traits. In the last decades several studies have contributed to showing how relevant may be the recognition of fractal properties for a better understanding of brain and nervous tissues either in healthy conditions or in altered and pathological states.
文摘This paper presents a study on the cracking of steel pieces during their galvanization in alloyed liquid zinc. An experimental design was developed to show the effect of the amount of the various alloying elements (Sn, Bi, Pb) on this phenomenon. The characterization of the effect was obtained by 1) deformation by three-point bending of a piece of steel with different levels of deflection;2) galvanizing and 3) observation and measurement of the cracks. A model of the critical deflection (deflection for crack starting) with the amounts of Sn, Pb, and Bi is presented and the predictions are described.
文摘We have investigated the Nu Calm Transcutaneous Vagus Nerve Stimulation device of the NuCalm Solace Lifesciences founding that it gives a multifractal output. A diminishing fractal/multifractal HRV is consistently reported in literature as related to a serious Autonomic Nervous System (ANS) dysfunction that of course we observe in several psychological and psychiatric disorders. Therefore, we suggest the investigators to apply such a device in subjects affected from anxiety, depression and stress using the method of inducing tVNS stimulation.
基金support by the French Space Agency CNES,PNP(Programme National de Planétologie)TOSCA(Terre,Océan,Surfaces Continentales,Atmosphère)
文摘In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometers large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances almost equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks are resulted from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that(1) centimetric to kilometric PFS are resulted from the dramatic increase of L during compaction and(2), this process involves agglomerates with 100 μm to 1 mm size.
基金support from ERC Starting (Grant No. 639217 CSINEUTRONSTAR)support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship+2 种基金suported by the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Global Fellowship (Grant No. 703916)supported in part by the DFG through Grant SFB 1245 and the ERC (Grant No. 307986 STRONGINT)support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)
文摘In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020 s.
基金financial contribution from the agreement ASI-INAF n.2017-14-H.Osupport of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the Polish National Science Centre(Grant No.2013/10/M/ST9/00729)
文摘In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced "spectral-timing-polarimetry" techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.
基金supported by the Royal Society,ERC Starting(Grant No.639217)he European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Global Fellowship(Grant No.703916)+10 种基金the National Natural Science Foundation of China(Grant Nos.11233001,11773014,11633007,11403074,11333005,11503008,and 11590781)the National Basic Research Program of China(Grant No.2015CB857100)NASA(Grant No.NNX13AD28A)an ARC Future Fellowship(Grant No.FT120100363)the National Science Foundation(Grant No.PHY-1430152)the Spanish MINECO(Grant No.AYA2016-76012-C3-1-P)the ICCUB(Unidad de Excelencia’Maria de Maeztu’)(Grant No.MDM-2014-0369)EU’s Horizon Programme through a Marie Sklodowska-Curie Fellowship(Grant No.702638)the Polish National Science Center(Grant Nos.2015/17/B/ST9/03422,2015/18/M/ST9/00541,2013/10/M/ST9/00729,and 2015/18/A/ST9/00746)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the NWO Veni Fellowship(Grant No.639.041.647)
文摘In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.