The given article presents an analytical model developed for a multichannel technical queuing system with time redundancy for operability management, subsystems of reliable periodical control of sudden and gradual fai...The given article presents an analytical model developed for a multichannel technical queuing system with time redundancy for operability management, subsystems of reliable periodical control of sudden and gradual failure detection and a subsystem for system recovery after failure. It is assumed in the model that the failures are governed by the Poisson probability distribution law and the times of reliable control and system recovery after failures are governed by an arbitrary law of probability distribution, in the general case depending on the number of servicers. The paper defines probabilities of accomplishment of certain task volumes by the system within a priori defined time intervals, taking into consideration its reliability characteristics.展开更多
The given article deals with the development of analytical model of request service process by multichannel technical system with unreliable, repaired and reconfigured service facilities. It is assumed that the system...The given article deals with the development of analytical model of request service process by multichannel technical system with unreliable, repaired and reconfigured service facilities. It is assumed that the system is functioning in service mode of random length random request flows. The system considers the existence of time redundancy for afterservice of calls, the service of which is interrupted with refusal, non-depreciating the performed part of the task. Special probability functions are introduced which on the basis of probability reasoning allow to make the systems of integral equations describing the dynamics of request service process.展开更多
The work deals with the development of analytical model of multichannel technical queuing system with unreliable servers and input memory where server failure flows and incoming request flows comply with Poissonian la...The work deals with the development of analytical model of multichannel technical queuing system with unreliable servers and input memory where server failure flows and incoming request flows comply with Poissonian laws, while the flows of failed facilities repairs and flows of incoming requests comply with exponential laws of probability distribution. Random process of system change-over is a Markovian process with continuous time and discrete states. Relations binding basic parameters and output characteristics of the system indicated are obtained as probabilities of system staying in the given moment in one of the possible states. The proposed model is the most generalized compared to some models known in literature which could be considered as special cases of the considered model.展开更多
The work is dedicated to the development of analytical model of probability estimation of reliability, productivity, quality and efficiency of functioning of the complex technical queuing system consisting of the arbi...The work is dedicated to the development of analytical model of probability estimation of reliability, productivity, quality and efficiency of functioning of the complex technical queuing system consisting of the arbitrary number of marked groups of the service devises (channels, facilities, servers) differing with reliable characteristics (parameters of refusals and restorations) of forming their composition (also of arbitrary number) marked, identical, unreliable and restorable serving channels in which for serving come in requirements with intensities depending on marking of channels. In the considered system it is supposed that the currents of refusals of serving devices and currents of coming requirements are subdued to Poisson, and the currents of restorations of refused devices and the currents of services of coming requirements—exponential laws of distribution of probabilities. A stochastic process of transfers of a system by that is Markovian process with continuous time and discrete states. Correlations linking the basic parameters and exit characteristics of the systems of the pointed out type are obtained in a view of probabilities of the system location in the given moment of time in one of the possible states.展开更多
Generalized equation for linear gravity waves in moving medium has been obtained. Sound wave is considered as a particular case and it is shown that in inhomogeneous medium at rest it is propagated in full concordance...Generalized equation for linear gravity waves in moving medium has been obtained. Sound wave is considered as a particular case and it is shown that in inhomogeneous medium at rest it is propagated in full concordance with the Doppler law and principle of motion relativity, i.e. these laws are invariant with reference to properties of medium (homogeneity or inhomogeneity). In moving medium they are fair only in the case of its homogeneity. In strongly inhomogeneous moving medium, propagation of sound is absolutely impossible.展开更多
It is demonstrated that contemporary conception on adiabaticity of sound in the Earth atmosphere is fair in sufficient approximation only for altitudes z ≤ 103 m. At higher altitudes adiabaticity of sound is violated...It is demonstrated that contemporary conception on adiabaticity of sound in the Earth atmosphere is fair in sufficient approximation only for altitudes z ≤ 103 m. At higher altitudes adiabaticity of sound is violated and essential dependence of its speed on altitude is revealed which is related to heterogeneity of the atmosphere in gravitation field of the Earth. It became possible to reveal the factor of gravity field due to the fact that in the equation of the state of atmosphere considered to be ideal gas, the entropy s is taken into consideration and is written down as ρ = (p, s) instead of generally accepted ρ = ρ(p) which is fair only for isentropic media and is not applicable to the Earth. Such approach enabled to determine that apart from adiabatic mechanism of generation of sound wave there exists isobaric one and exactly this mechanism leads to dependence of sound speed on altitude which is the same as dependence on density.展开更多
It is demonstrated that the universally accepted system of gas-dynamic (hydrodynamic) equations is applicable only to homogeneous (isentropic) media and requires advancement to get applicable to non-homogeneous media....It is demonstrated that the universally accepted system of gas-dynamic (hydrodynamic) equations is applicable only to homogeneous (isentropic) media and requires advancement to get applicable to non-homogeneous media. A generalized equation of gravitational wave for adiabatic and ideal media is obtained from advanced system. From this equation, in turn, is obtained an equation of acoustic wave, which is plane and different form the known equation in that the phase speed of the wave in the Earth atmosphere obviously depends on altitude, i.e. C = C (z, T) instead of accepted C = C (T). Thus, acoustic wave is a short-period gravitational wave in which gravitational effects are revealed at altitudes z > 2.3 × 103 m, which leads to amplification of refraction of sound. The sphere of applicability of the equation is determined and it is demonstrated that it is true only up to the upper boundary of the troposphere ( z ≤ 11 - 12km.) above which anomalous processes develop in the atmosphere.展开更多
The properties of the polarization sensitized material with the wide possibilities,on the basis of azo-dye doped polymers,are reviewed and analyzed shortly.Some experimental results obtained on these materials in the ...The properties of the polarization sensitized material with the wide possibilities,on the basis of azo-dye doped polymers,are reviewed and analyzed shortly.Some experimental results obtained on these materials in the polarization holography andphotography on the basis of Weigert’s effect are briefly described.In particular,with the help of these materials,the results ofholographic recording and reconstruction of the polarization characteristics of the light field have been significantly improved.Wereobtained holographic diffractive optical elements with the highest diffraction efficiency,such as diffraction gratings and zone plates(Fresnel lenses),which have no analogues among the known ones.Was observed self-recording phenomenon in a dynamicholographic recording and recovery process.The prospects of using the given materials in the photography for obtaining polarimetricimages of various objects,including celestial bodies,were shown.展开更多
文摘The given article presents an analytical model developed for a multichannel technical queuing system with time redundancy for operability management, subsystems of reliable periodical control of sudden and gradual failure detection and a subsystem for system recovery after failure. It is assumed in the model that the failures are governed by the Poisson probability distribution law and the times of reliable control and system recovery after failures are governed by an arbitrary law of probability distribution, in the general case depending on the number of servicers. The paper defines probabilities of accomplishment of certain task volumes by the system within a priori defined time intervals, taking into consideration its reliability characteristics.
文摘The given article deals with the development of analytical model of request service process by multichannel technical system with unreliable, repaired and reconfigured service facilities. It is assumed that the system is functioning in service mode of random length random request flows. The system considers the existence of time redundancy for afterservice of calls, the service of which is interrupted with refusal, non-depreciating the performed part of the task. Special probability functions are introduced which on the basis of probability reasoning allow to make the systems of integral equations describing the dynamics of request service process.
文摘The work deals with the development of analytical model of multichannel technical queuing system with unreliable servers and input memory where server failure flows and incoming request flows comply with Poissonian laws, while the flows of failed facilities repairs and flows of incoming requests comply with exponential laws of probability distribution. Random process of system change-over is a Markovian process with continuous time and discrete states. Relations binding basic parameters and output characteristics of the system indicated are obtained as probabilities of system staying in the given moment in one of the possible states. The proposed model is the most generalized compared to some models known in literature which could be considered as special cases of the considered model.
文摘The work is dedicated to the development of analytical model of probability estimation of reliability, productivity, quality and efficiency of functioning of the complex technical queuing system consisting of the arbitrary number of marked groups of the service devises (channels, facilities, servers) differing with reliable characteristics (parameters of refusals and restorations) of forming their composition (also of arbitrary number) marked, identical, unreliable and restorable serving channels in which for serving come in requirements with intensities depending on marking of channels. In the considered system it is supposed that the currents of refusals of serving devices and currents of coming requirements are subdued to Poisson, and the currents of restorations of refused devices and the currents of services of coming requirements—exponential laws of distribution of probabilities. A stochastic process of transfers of a system by that is Markovian process with continuous time and discrete states. Correlations linking the basic parameters and exit characteristics of the systems of the pointed out type are obtained in a view of probabilities of the system location in the given moment of time in one of the possible states.
文摘Generalized equation for linear gravity waves in moving medium has been obtained. Sound wave is considered as a particular case and it is shown that in inhomogeneous medium at rest it is propagated in full concordance with the Doppler law and principle of motion relativity, i.e. these laws are invariant with reference to properties of medium (homogeneity or inhomogeneity). In moving medium they are fair only in the case of its homogeneity. In strongly inhomogeneous moving medium, propagation of sound is absolutely impossible.
文摘It is demonstrated that contemporary conception on adiabaticity of sound in the Earth atmosphere is fair in sufficient approximation only for altitudes z ≤ 103 m. At higher altitudes adiabaticity of sound is violated and essential dependence of its speed on altitude is revealed which is related to heterogeneity of the atmosphere in gravitation field of the Earth. It became possible to reveal the factor of gravity field due to the fact that in the equation of the state of atmosphere considered to be ideal gas, the entropy s is taken into consideration and is written down as ρ = (p, s) instead of generally accepted ρ = ρ(p) which is fair only for isentropic media and is not applicable to the Earth. Such approach enabled to determine that apart from adiabatic mechanism of generation of sound wave there exists isobaric one and exactly this mechanism leads to dependence of sound speed on altitude which is the same as dependence on density.
文摘It is demonstrated that the universally accepted system of gas-dynamic (hydrodynamic) equations is applicable only to homogeneous (isentropic) media and requires advancement to get applicable to non-homogeneous media. A generalized equation of gravitational wave for adiabatic and ideal media is obtained from advanced system. From this equation, in turn, is obtained an equation of acoustic wave, which is plane and different form the known equation in that the phase speed of the wave in the Earth atmosphere obviously depends on altitude, i.e. C = C (z, T) instead of accepted C = C (T). Thus, acoustic wave is a short-period gravitational wave in which gravitational effects are revealed at altitudes z > 2.3 × 103 m, which leads to amplification of refraction of sound. The sphere of applicability of the equation is determined and it is demonstrated that it is true only up to the upper boundary of the troposphere ( z ≤ 11 - 12km.) above which anomalous processes develop in the atmosphere.
文摘The properties of the polarization sensitized material with the wide possibilities,on the basis of azo-dye doped polymers,are reviewed and analyzed shortly.Some experimental results obtained on these materials in the polarization holography andphotography on the basis of Weigert’s effect are briefly described.In particular,with the help of these materials,the results ofholographic recording and reconstruction of the polarization characteristics of the light field have been significantly improved.Wereobtained holographic diffractive optical elements with the highest diffraction efficiency,such as diffraction gratings and zone plates(Fresnel lenses),which have no analogues among the known ones.Was observed self-recording phenomenon in a dynamicholographic recording and recovery process.The prospects of using the given materials in the photography for obtaining polarimetricimages of various objects,including celestial bodies,were shown.