Dear Editor,Herpesviridae is a large family of double-stranded DNA(dsDNA)viruses that cause a variety of human diseases ranging from cold sores and chicken pox to congenital defects,blindness and cancer(Chayavichitsil...Dear Editor,Herpesviridae is a large family of double-stranded DNA(dsDNA)viruses that cause a variety of human diseases ranging from cold sores and chicken pox to congenital defects,blindness and cancer(Chayavichitsilp et al.,2009;Wang et al.,2018).In the past 70 years,substantial advances in our knowledge of the molecular biology of herpesviruses have led to insights into disease pathogenesis and management.However,the mechanism for capsid assembly that requires the ordered packing of about 4,000 protein subunits into the hexons,pentons and triplexes remains elusive.It is still a puzzle how initially identical subunits adopt both hexameric and pentameric conformations in the capsid and select the correct locations needed to form closed shells of the proper size.Biochemical and genetic studies have shown that the portal is involved in initiation of capsid assembly(Newcomb et al.,2005)and functions akin to a DNA-sensor coupling genome-packaging achieved by a genome-packaging machinery-“terminase complex”(Chen et al.,2020;Yunxiang Yang,2020)with icosahedral capsid maturation(Lokareddy et al.,2017).Structural investigations of the herpesvirus portal have proven challenging due to the small size of this dodecamer,which accounts for less than 1%of the total mass of the capsid protein layer and the technical difficulties involved in resolving non-icosahedral components of such large icosahedral viruses(diameter is∼1,250Å).Efforts of many investigators over two decades have made to reconstruct the cryo-electron microscopy(cryo-EM)structure of herpesvirus portal vertex and more recently near-atomic structures of two herpesvirus(herpes simplex virus type 1(HSV-1)and Kaposi’s sarcoma-associated herpesvirus(KSHV))portal vertices were reported(McElwee et al.,2018;Gong et al.,2019;Liu et al.,2019).展开更多
基金Work was supported by the Key Programs of the Chinese Academy(KJZD-SW-L05)the Strategic Priority Research Program(XDB29010000)+2 种基金National Key Research and Development Program(2018YFA0900801 and 2017YFC0840300)National Natural Science Foundation of China(31800145 and 81520108019)and National Science Foundation of Hunan Province,China(2019JJ10002)Ling Zhu was sponsored by the Youth Innovation Promotion Association at the Chinese Academy of Science.Xiangxi Wang was supported by Ten Thousand Talent Program and the NSFS Innovative Research Group(No.81921005)。
文摘Dear Editor,Herpesviridae is a large family of double-stranded DNA(dsDNA)viruses that cause a variety of human diseases ranging from cold sores and chicken pox to congenital defects,blindness and cancer(Chayavichitsilp et al.,2009;Wang et al.,2018).In the past 70 years,substantial advances in our knowledge of the molecular biology of herpesviruses have led to insights into disease pathogenesis and management.However,the mechanism for capsid assembly that requires the ordered packing of about 4,000 protein subunits into the hexons,pentons and triplexes remains elusive.It is still a puzzle how initially identical subunits adopt both hexameric and pentameric conformations in the capsid and select the correct locations needed to form closed shells of the proper size.Biochemical and genetic studies have shown that the portal is involved in initiation of capsid assembly(Newcomb et al.,2005)and functions akin to a DNA-sensor coupling genome-packaging achieved by a genome-packaging machinery-“terminase complex”(Chen et al.,2020;Yunxiang Yang,2020)with icosahedral capsid maturation(Lokareddy et al.,2017).Structural investigations of the herpesvirus portal have proven challenging due to the small size of this dodecamer,which accounts for less than 1%of the total mass of the capsid protein layer and the technical difficulties involved in resolving non-icosahedral components of such large icosahedral viruses(diameter is∼1,250Å).Efforts of many investigators over two decades have made to reconstruct the cryo-electron microscopy(cryo-EM)structure of herpesvirus portal vertex and more recently near-atomic structures of two herpesvirus(herpes simplex virus type 1(HSV-1)and Kaposi’s sarcoma-associated herpesvirus(KSHV))portal vertices were reported(McElwee et al.,2018;Gong et al.,2019;Liu et al.,2019).