The elastic behavior of arteries is nonlinear when subjected to large deformations. In order to measure their anisotropic behavior, planar biaxial tests are often used. Typically, hooks are attached along the borders ...The elastic behavior of arteries is nonlinear when subjected to large deformations. In order to measure their anisotropic behavior, planar biaxial tests are often used. Typically, hooks are attached along the borders of a square sample of arterial tissue. Cruciform samples clamped with grips can also be used. The current debate on the effect of different biaxial test boundary conditions revolves around the uniformity of the stress distribution in the center of the specimen. Uniaxial tests are also commonly used due to simplicity of data analysis, but their capability to fully describe the in vivo behavior of a tissue remains to be proven. In this study, we demonstrate the use of inverse modeling to fit the material properties by taking into account the non-uniform stress distribution, and discuss the differences between the three types of tests. Square and cruciform samples were dissected from pig aortas and tested equi-biaxially. Rectangular samples were used in uniaxial testing as well. On the square samples, forces were applied on each side of edge sample attached with hooks, and strains were measured in the center using optical tracking of ink dots. On the cruciform and rectangular samples, displacements were applied on grip clamps and forces were measured on the clamps. Each type of experiment was simulated with the finite element method. The parameters of the Mooney-Rivlin constitutive model were adjusted with an optimization algorithm so that the simulation predictions fitted the experimental results. Higher stretch ratios (>1.5) were reached in the cruciform and rectangular samples than in the square samples before failure. Therefore, the nonlinear behavior of the tissue in large deformations was better captured by the cruciform biaxial test and the uniaxial test, than by the square biaxial test. Advantages of cruciform samples over square samples include: 1) higher deformation range;2) simpler data acquisition and 3) easier attachment of sample. However, the nonuniform stress distribution in cruciform samples requires the use of inverse modeling adjustment of constitutive model parameters.展开更多
Laser consolidation(LC) is a novel computer-aided manufacturing process developed by the Industrial Materials Institute of National Research Council of Canada(NRC-IMI).This rapid manufacturing process produces net-sha...Laser consolidation(LC) is a novel computer-aided manufacturing process developed by the Industrial Materials Institute of National Research Council of Canada(NRC-IMI).This rapid manufacturing process produces net-shape functional metallic parts layer-by-layer directly from a computer aided design(CAD) model by using a laser beam to melt the injected powder and re-solidifying it on the substrate or previous layer.As an alternative to the conventional machining process,this novel manufacturing process builds net-shape functional parts or features on an existing part by adding instead of removing material.In this review paper,LC of CPM-9V tool steel,Ni-based IN-625 and IN-718 superalloys,and Ti-6Al-4V alloy will be discussed.The microstructures and functional properties of these laser consolidated materials will be examined along with several potential industrial applications.展开更多
Titanium/fluorapatite (Ti/FA) composites with various FA additions were fabricated by powder metallurgy. The decomposition of FA during sintering was accelerated by the presence of Ti. The main reaction products of ...Titanium/fluorapatite (Ti/FA) composites with various FA additions were fabricated by powder metallurgy. The decomposition of FA during sintering was accelerated by the presence of Ti. The main reaction products of FA and Ti were identified as CaO, Ti phosphides, and CaTiO3. The addition of FA significantly inhibited the densification of Ti. The in vitro bioactivity of the composites was evaluated in a simulated body fluid (SBF). After immersion into the SBF, all the Ti/FA composites induced nucleation and growth of bone-like carbonated apatite on the surface. Co-precipitation of CaCO3 and Mg(OH)2 was also detected on the surface of the composite with high FA addition at an early stage of immersion. Furthermore, the release of fluorine ions from the composite was confirmed, which could promote bone regeneration and retard the formation of caries in the biological environment. The in vitro behavior was attributed to multiple factors, including the surface conditions and the constituents of the composite. The results demonstrated that the Ti/FA composites were bioactive in nature even with a low FA addition and they could introduce the benefit of fluorine ions in the service.展开更多
文摘The elastic behavior of arteries is nonlinear when subjected to large deformations. In order to measure their anisotropic behavior, planar biaxial tests are often used. Typically, hooks are attached along the borders of a square sample of arterial tissue. Cruciform samples clamped with grips can also be used. The current debate on the effect of different biaxial test boundary conditions revolves around the uniformity of the stress distribution in the center of the specimen. Uniaxial tests are also commonly used due to simplicity of data analysis, but their capability to fully describe the in vivo behavior of a tissue remains to be proven. In this study, we demonstrate the use of inverse modeling to fit the material properties by taking into account the non-uniform stress distribution, and discuss the differences between the three types of tests. Square and cruciform samples were dissected from pig aortas and tested equi-biaxially. Rectangular samples were used in uniaxial testing as well. On the square samples, forces were applied on each side of edge sample attached with hooks, and strains were measured in the center using optical tracking of ink dots. On the cruciform and rectangular samples, displacements were applied on grip clamps and forces were measured on the clamps. Each type of experiment was simulated with the finite element method. The parameters of the Mooney-Rivlin constitutive model were adjusted with an optimization algorithm so that the simulation predictions fitted the experimental results. Higher stretch ratios (>1.5) were reached in the cruciform and rectangular samples than in the square samples before failure. Therefore, the nonlinear behavior of the tissue in large deformations was better captured by the cruciform biaxial test and the uniaxial test, than by the square biaxial test. Advantages of cruciform samples over square samples include: 1) higher deformation range;2) simpler data acquisition and 3) easier attachment of sample. However, the nonuniform stress distribution in cruciform samples requires the use of inverse modeling adjustment of constitutive model parameters.
文摘Laser consolidation(LC) is a novel computer-aided manufacturing process developed by the Industrial Materials Institute of National Research Council of Canada(NRC-IMI).This rapid manufacturing process produces net-shape functional metallic parts layer-by-layer directly from a computer aided design(CAD) model by using a laser beam to melt the injected powder and re-solidifying it on the substrate or previous layer.As an alternative to the conventional machining process,this novel manufacturing process builds net-shape functional parts or features on an existing part by adding instead of removing material.In this review paper,LC of CPM-9V tool steel,Ni-based IN-625 and IN-718 superalloys,and Ti-6Al-4V alloy will be discussed.The microstructures and functional properties of these laser consolidated materials will be examined along with several potential industrial applications.
基金supported by the Natural Science and Engineering Research Council of Canada
文摘Titanium/fluorapatite (Ti/FA) composites with various FA additions were fabricated by powder metallurgy. The decomposition of FA during sintering was accelerated by the presence of Ti. The main reaction products of FA and Ti were identified as CaO, Ti phosphides, and CaTiO3. The addition of FA significantly inhibited the densification of Ti. The in vitro bioactivity of the composites was evaluated in a simulated body fluid (SBF). After immersion into the SBF, all the Ti/FA composites induced nucleation and growth of bone-like carbonated apatite on the surface. Co-precipitation of CaCO3 and Mg(OH)2 was also detected on the surface of the composite with high FA addition at an early stage of immersion. Furthermore, the release of fluorine ions from the composite was confirmed, which could promote bone regeneration and retard the formation of caries in the biological environment. The in vitro behavior was attributed to multiple factors, including the surface conditions and the constituents of the composite. The results demonstrated that the Ti/FA composites were bioactive in nature even with a low FA addition and they could introduce the benefit of fluorine ions in the service.