More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontane...More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontaneous acquisition of proteinaceous “conditioning films” of differing degrees of denaturation but usually of the same substances within any given system. This led to the understanding that useful engineering control of such interactions could thus be manifested through adjustments to those surface properties, giving significant control and utility to the biomaterials developer without requiring detailed discovery of the biological specifications of the components involved. Thus, effective selection of adhesive versus abhesive (non-stick, non-retention) outcomes for such useful appliances as dental implants versus substitute blood vessels, or water-resistant bonded structures versus clean, nontoxic ship bottoms is now facilitated with little biological background required. A historical overview is presented, followed by a brief survey of the forces involved and most useful analyses applied. Utility for blood-contacting materials is described in contrast to utility for bone- and tissue-contacting materials, demonstrating practical uses in controlling cell-surface interactions and preventing biofouling. New research directions being explored are noted, urging applications of this prior knowledge to replace the use of toxicants.展开更多
文摘More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontaneous acquisition of proteinaceous “conditioning films” of differing degrees of denaturation but usually of the same substances within any given system. This led to the understanding that useful engineering control of such interactions could thus be manifested through adjustments to those surface properties, giving significant control and utility to the biomaterials developer without requiring detailed discovery of the biological specifications of the components involved. Thus, effective selection of adhesive versus abhesive (non-stick, non-retention) outcomes for such useful appliances as dental implants versus substitute blood vessels, or water-resistant bonded structures versus clean, nontoxic ship bottoms is now facilitated with little biological background required. A historical overview is presented, followed by a brief survey of the forces involved and most useful analyses applied. Utility for blood-contacting materials is described in contrast to utility for bone- and tissue-contacting materials, demonstrating practical uses in controlling cell-surface interactions and preventing biofouling. New research directions being explored are noted, urging applications of this prior knowledge to replace the use of toxicants.