Internet of Medical Things(IoMT)plays an essential role in collecting and managing personal medical data.In recent years,blockchain technology has put power in traditional IoMT systems for data sharing between differe...Internet of Medical Things(IoMT)plays an essential role in collecting and managing personal medical data.In recent years,blockchain technology has put power in traditional IoMT systems for data sharing between different medical institutions and improved the utilization of medical data.However,some problems in the information transfer process between wireless medical devices and mobile medical apps,such as information leakage and privacy disclosure.This paper first designs a cross-device key agreement model for blockchain-enabled IoMT.This model can establish a key agreement mechanism for secure medical data sharing.Meanwhile,a certificateless authenticated key agreement(KA)protocol has been proposed to strengthen the information transfer security in the cross-device key agreement model.The proposed KA protocol only requires one exchange of messages between the two parties,which can improve the protocol execution efficiency.Then,any unauthorized tampering of the transmitted signed message sent by the sender can be detected by the receiver,so this can guarantee the success of the establishment of a session key between the strange entities.The blockchain ledger can ensure that the medical data cannot be tampered with,and the certificateless mechanism can weaken the key escrow problem.Moreover,the security proof and performance analysis are given,which show that the proposed model and KA protocol are more secure and efficient than other schemes in similar literature.展开更多
Along with the increase of wearable medical device,the privacy leakage problem in the process of transmission between these edge medical devices.The blockchain-enabled Internet of Medical Things(BIoMT)has been develop...Along with the increase of wearable medical device,the privacy leakage problem in the process of transmission between these edge medical devices.The blockchain-enabled Internet of Medical Things(BIoMT)has been developed to reform traditional centralized medical system in recent years.This paper first introduces a data anonymous authentication model to protect user privacy and medical data in BIoMT.Then,a proxy group signature(PGS)scheme has been proposed based on lattice assumption.This scheme can well satisfy the anonymous authentication demand for the proposed model,and provide anti-quantum attack security for BIoMT in the future general quantum computer age.Moreover,the security analysis shows this PGS scheme is secure against the dynamical-almost-full anonymous and traceability.The efficiency comparison shows the proposed model and PGS scheme is more efficient and practical.展开更多
The traditional authentication system is based on the secret key, and is mainly based on public key infrastructure (PKI). Unfortunately, a key has many disadvantages, for example, the key can be forgotten or stolen,...The traditional authentication system is based on the secret key, and is mainly based on public key infrastructure (PKI). Unfortunately, a key has many disadvantages, for example, the key can be forgotten or stolen, and can be easily cracked. Nowadays, authentication systems using biometric technology have become more prevalent because of the advantages over password-based authentication systems. In this article, several biometfic authentication models are presented, upon which most biometric authentication systems are based. Biometric authentication systems based-on these models provide high security for access control in non-face-to-face environment such as e-commerce, over open network.展开更多
In order to predict and improve the performance of networked storage systems,this paper explored the rela-tionship between the system I/O response time and its per-formance factors by quantitative analytical method.Th...In order to predict and improve the performance of networked storage systems,this paper explored the rela-tionship between the system I/O response time and its per-formance factors by quantitative analytical method.Through analyzing data flow in networked RAID storage system,we established its analytical model utilizing closed queueing networks and studied the performance bounds of the system I/O response time.Experimental results show that the theo-retical bounds are found to be in agreement with the actual performance bounds of the networked RAID storage system and reflect the dynamic trend of its actual performance.Furthermore,it concludes that the CPU processing power and cache hit rate of the central storage server are the key factors affecting the I/O response time as the concurrent jobs are lower,while the network bandwidth and cache hit rate of the central storage server become the key factors as the concurrent jobs go higher.展开更多
基金supported by the National Natural Science Foundation of China under Grant 92046001,61962009,the JSPS KAKENHI Grant Numbers JP19K20250,JP20H04174,JP22K11989Leading Initiative for Excellent Young Researchers (LEADER),MEXT,Japan,and JST,PRESTO Grant Number JPMJPR21P3+1 种基金Japan.Mianxiong Dong is the corresponding author,the Doctor Scientific Research Fund of Zhengzhou University of Light Industry under Grant 2021BSJJ033Key Scientific Research Project of Colleges and Universities in Henan Province (CN)under Grant No.22A413010.
文摘Internet of Medical Things(IoMT)plays an essential role in collecting and managing personal medical data.In recent years,blockchain technology has put power in traditional IoMT systems for data sharing between different medical institutions and improved the utilization of medical data.However,some problems in the information transfer process between wireless medical devices and mobile medical apps,such as information leakage and privacy disclosure.This paper first designs a cross-device key agreement model for blockchain-enabled IoMT.This model can establish a key agreement mechanism for secure medical data sharing.Meanwhile,a certificateless authenticated key agreement(KA)protocol has been proposed to strengthen the information transfer security in the cross-device key agreement model.The proposed KA protocol only requires one exchange of messages between the two parties,which can improve the protocol execution efficiency.Then,any unauthorized tampering of the transmitted signed message sent by the sender can be detected by the receiver,so this can guarantee the success of the establishment of a session key between the strange entities.The blockchain ledger can ensure that the medical data cannot be tampered with,and the certificateless mechanism can weaken the key escrow problem.Moreover,the security proof and performance analysis are given,which show that the proposed model and KA protocol are more secure and efficient than other schemes in similar literature.
基金This work was supported by the National Natural Science Foundation of China under Grants 92046001,61962009the Doctor Scientific Research Fund of Zhengzhou University of Light Industry under Grant 2021BSJJ033Key Scientific Research Project of Colleges and Universities in Henan Province(CN)under Grant No.22A413010。
文摘Along with the increase of wearable medical device,the privacy leakage problem in the process of transmission between these edge medical devices.The blockchain-enabled Internet of Medical Things(BIoMT)has been developed to reform traditional centralized medical system in recent years.This paper first introduces a data anonymous authentication model to protect user privacy and medical data in BIoMT.Then,a proxy group signature(PGS)scheme has been proposed based on lattice assumption.This scheme can well satisfy the anonymous authentication demand for the proposed model,and provide anti-quantum attack security for BIoMT in the future general quantum computer age.Moreover,the security analysis shows this PGS scheme is secure against the dynamical-almost-full anonymous and traceability.The efficiency comparison shows the proposed model and PGS scheme is more efficient and practical.
基金National Natural Science Foundation of China (60372094) Beijing Natural Science Foundation (4062025).
文摘The traditional authentication system is based on the secret key, and is mainly based on public key infrastructure (PKI). Unfortunately, a key has many disadvantages, for example, the key can be forgotten or stolen, and can be easily cracked. Nowadays, authentication systems using biometric technology have become more prevalent because of the advantages over password-based authentication systems. In this article, several biometfic authentication models are presented, upon which most biometric authentication systems are based. Biometric authentication systems based-on these models provide high security for access control in non-face-to-face environment such as e-commerce, over open network.
基金granted by National Natural Science Foundation of China(No.60273031,No.90612001)Educa-tion Ministry Doctoral Research Foundation of China(No.20020055021)Technological Development Project Foundation of Tianjin(No.043800311).
文摘In order to predict and improve the performance of networked storage systems,this paper explored the rela-tionship between the system I/O response time and its per-formance factors by quantitative analytical method.Through analyzing data flow in networked RAID storage system,we established its analytical model utilizing closed queueing networks and studied the performance bounds of the system I/O response time.Experimental results show that the theo-retical bounds are found to be in agreement with the actual performance bounds of the networked RAID storage system and reflect the dynamic trend of its actual performance.Furthermore,it concludes that the CPU processing power and cache hit rate of the central storage server are the key factors affecting the I/O response time as the concurrent jobs are lower,while the network bandwidth and cache hit rate of the central storage server become the key factors as the concurrent jobs go higher.