An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and s...An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and speed up the diagnosis of pneumonia,numerous approaches have been devised.To date,several methods have been employed to identify pneumonia.The Convolutional Neural Network(CNN)has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology.However,these methods are complex,inefficient,and imprecise to analyze a big number of datasets.In this paper,a new hybrid method for the automatic classification and identification of Pneumonia from chest X-ray images is proposed.The proposed method(ABOCNN)utilized theAfrican BuffaloOptimization(ABO)algorithmto enhanceCNNperformance and accuracy.The Weinmed filter is employed for pre-processing to eliminate unwanted noises from chest X-ray images,followed by feature extraction using the Grey Level Co-Occurrence Matrix(GLCM)approach.Relevant features are then selected from the dataset using the ABO algorithm,and ultimately,high-performance deep learning using the CNN approach is introduced for the classification and identification of Pneumonia.Experimental results on various datasets showed that,when contrasted to other approaches,the ABO-CNN outperforms them all for the classification tasks.The proposed method exhibits superior values like 96.95%,88%,86%,and 86%for accuracy,precision,recall,and F1-score,respectively.展开更多
Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been dev...Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.展开更多
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ...Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.展开更多
Heart disease remains a leading cause of morbidity and mortality worldwide,highlighting the need for improved diagnostic methods.Traditional diagnostics face limitations such as reliance on single-modality data and vu...Heart disease remains a leading cause of morbidity and mortality worldwide,highlighting the need for improved diagnostic methods.Traditional diagnostics face limitations such as reliance on single-modality data and vulnerability to apparatus faults,which can reduce accuracy,especially with poor-quality images.Additionally,these methods often require significant time and expertise,making them less accessible in resource-limited settings.Emerging technologies like artificial intelligence and machine learning offer promising solutions by integrating multi-modality data and enhancing diagnostic precision,ultimately improving patient outcomes and reducing healthcare costs.This study introduces Heart-Net,a multi-modal deep learning framework designed to enhance heart disease diagnosis by integrating data from Cardiac Magnetic Resonance Imaging(MRI)and Electrocardiogram(ECG).Heart-Net uses a 3D U-Net for MRI analysis and a Temporal Convolutional Graph Neural Network(TCGN)for ECG feature extraction,combining these through an attention mechanism to emphasize relevant features.Classification is performed using Optimized TCGN.This approach improves early detection,reduces diagnostic errors,and supports personalized risk assessments and continuous health monitoring.The proposed approach results show that Heart-Net significantly outperforms traditional single-modality models,achieving accuracies of 92.56%forHeartnetDataset Ⅰ(HNET-DSⅠ),93.45%forHeartnetDataset Ⅱ(HNET-DSⅡ),and 91.89%for Heartnet Dataset Ⅲ(HNET-DSⅢ),mitigating the impact of apparatus faults and image quality issues.These findings underscore the potential of Heart-Net to revolutionize heart disease diagnostics and improve clinical outcomes.展开更多
The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its ...The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage;otherwise,it will become a severe problem and make a human liver suffer from the most dangerous diseases,such as liver cancer.In this paper,two medical diagnostic systems are developed for the diagnosis of this life-threatening virus.The methodologies used to develop thesemodels are fuzzy logic and the neuro-fuzzy technique.The diverse parameters that assist in the evaluation of performance are also determined by using the observed values from the proposed system for both developedmodels.The classification accuracy of a multilayered fuzzy inference system is 94%.The accuracy with which the developed medical diagnostic system by using Adaptive Network based Fuzzy Interference System(ANFIS)classifies the result corresponding to the given input is 95.55%.The comparison of both developed models on the basis of their performance parameters has been made.It is observed that the neuro-fuzzy technique-based diagnostic system has better accuracy in classifying the infected and non-infected patients as compared to the fuzzy diagnostic system.Furthermore,the performance evaluation concluded that the outcome given by the developed medical diagnostic system by using ANFIS is accurate and correct as compared to the developed fuzzy inference system and also can be used in hospitals for the diagnosis of Hepatitis B disease.In other words,the adaptive neuro-fuzzy inference system has more capability to classify the provided inputs adequately than the fuzzy inference system.展开更多
With the rapid growth of the Internet of Things paradigm,a tremendous number of applications and services that require minimal or no human involvement have been developed to enhance the quality of everyday life in var...With the rapid growth of the Internet of Things paradigm,a tremendous number of applications and services that require minimal or no human involvement have been developed to enhance the quality of everyday life in various domains.In order to ensure that such services provide their functionalities with the expected quality,it is essential tomeasure and evaluate this quality,which can be in some cases a challenging task due to the lack of human intervention and feedback.Recently,the vast majority of the Quality of Experience QoE works mainly address the multimedia services.However,the introduction of Internet of Things IoT has brought a new level of complexity into the field of QoE evaluation.With the emerging of the new IoT technologies such as machine to machine communication and artificial intelligence,there is a crucial demand to utilize additional evaluation metrics alongside the traditional subjective and objective human factors and network quality factors.In this systematic review,a comprehensive survey of the QoE evaluation in IoT is presented.It reviews the existing quality of experience definitions,influencing factors,metrics,and models.The review is concluded by identifying the current gaps in the literature and suggested some future research directions accordingly.展开更多
<span style="font-family:Verdana;">Students face difficulties in programming languages learning (PLL) which encourages many scholars to investigate the factors behind that. Although there a number of p...<span style="font-family:Verdana;">Students face difficulties in programming languages learning (PLL) which encourages many scholars to investigate the factors behind that. Although there a number of positive and negative factors found to be effective in PLL procedure, utilising online tools in PLL were recognized as a positive recommended means. This motivates many researchers to provide solutions and proposals which result in a number of choices and options. However, categorising those efforts and showing what has been done, would provide a better and clear image for future studies. Therefore, this paper aims to conduct a systematic literature review to show what studies have been done and then categorise them based on the type of online tools and the aims of the research. The study follows Kitchenham and Charters guidelines for writing SLR (Systematic Literature Review). The search result reached 1390 publications between 2013-09/2018. After the filtration which has been done through selected criteria, 160 publications were found to be adequate to answer the review questions. The main results of this systematic review are categorizing the aims of the studies in online PLL tools, classifying the tools and finding the current trends of the online PLL tools.</span>展开更多
Anomalous situations in surveillance videos or images that may result in security issues,such as disasters,accidents,crime,violence,or terrorism,can be identified through video anomaly detection.However,differentiat-i...Anomalous situations in surveillance videos or images that may result in security issues,such as disasters,accidents,crime,violence,or terrorism,can be identified through video anomaly detection.However,differentiat-ing anomalous situations from normal can be challenging due to variations in human activity in complex environments such as train stations,busy sporting fields,airports,shopping areas,military bases,care centers,etc.Deep learning models’learning capability is leveraged to identify abnormal situations with improved accuracy.This work proposes a deep learning architecture called Anomalous Situation Recognition Network(ASRNet)for deep feature extraction to improve the detection accuracy of various anomalous image situations.The proposed framework has five steps.In the first step,pretraining of the proposed architecture is performed on the CIFAR-100 dataset.In the second step,the proposed pre-trained model and Inception V3 architecture are used for feature extraction by utilizing the suspicious activity recognition dataset.In the third step,serial feature fusion is performed,and then the Dragonfly algorithm is utilized for feature optimization in the fourth step.Finally,using optimized features,various Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based classification models are utilized to detect anomalous situations.The proposed framework is validated on the suspicious activity dataset by varying the number of optimized features from 100 to 1000.The results show that the proposed method is effective in detecting anomalous situations and achieves the highest accuracy of 99.24%using cubic SVM.展开更多
The combination of spatiotemporal videos and essential features can improve the performance of human action recognition(HAR);however,the individual type of features usually degrades the performance due to similar acti...The combination of spatiotemporal videos and essential features can improve the performance of human action recognition(HAR);however,the individual type of features usually degrades the performance due to similar actions and complex backgrounds.The deep convolutional neural network has improved performance in recent years for several computer vision applications due to its spatial information.This article proposes a new framework called for video surveillance human action recognition dubbed HybridHR-Net.On a few selected datasets,deep transfer learning is used to pre-trained the EfficientNet-b0 deep learning model.Bayesian optimization is employed for the tuning of hyperparameters of the fine-tuned deep model.Instead of fully connected layer features,we considered the average pooling layer features and performed two feature selection techniques-an improved artificial bee colony and an entropy-based approach.Using a serial nature technique,the features that were selected are combined into a single vector,and then the results are categorized by machine learning classifiers.Five publically accessible datasets have been utilized for the experimental approach and obtained notable accuracy of 97%,98.7%,100%,99.7%,and 96.8%,respectively.Additionally,a comparison of the proposed framework with contemporarymethods is done to demonstrate the increase in accuracy.展开更多
Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can ...Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can provide exact localization in indoor locations.In this context,imagebased localization methods can play an important role in estimating both the position and the orientation of cameras regarding an object.Image-based localization faces many issues,such as image scale and rotation variance.Also,image-based localization’s accuracy and speed(latency)are two critical factors.This paper proposes an efficient 6-DoF deep-learning model for image-based localization.This model incorporates the channel attention module and the Scale PyramidModule(SPM).It not only enhances accuracy but also ensures the model’s real-time performance.In complex scenes,a channel attention module is employed to distinguish between the textures of the foregrounds and backgrounds.Our model adapted an SPM,a feature pyramid module for dealing with image scale and rotation variance issues.Furthermore,the proposed model employs two regressions(two fully connected layers),one for position and the other for orientation,which increases outcome accuracy.Experiments on standard indoor and outdoor datasets show that the proposed model has a significantly lower Mean Squared Error(MSE)for both position and orientation.On the indoor 7-Scenes dataset,the MSE for the position is reduced to 0.19 m and 6.25°for the orientation.Furthermore,on the outdoor Cambridge landmarks dataset,the MSE for the position is reduced to 0.63 m and 2.03°for the orientation.According to the findings,the proposed approach is superior and more successful than the baseline methods.展开更多
In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic al...In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic algorithm)in order to improve the image segmentation.The proposed technique based on fusing the data from Particle Swarm Optimization(PSO),Cuckoo search,modification of Cuckoo Search(CS McCulloch)and Genetic algorithms are obtained for improving magnetic resonance images(MRIs)segmentation.Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods.In order to obtain parts of the points that determine similar membership values,we apply the different rules of incorporation for these groups.The proposed approach is applied to challenging applications:MRI images,gray matter/white matter of brain segmentations and original black/white images Behavior of the proposed algorithm is provided by applying to different medical images.It is shown that the proposed method gives accurate results;due to the decision fusion produces the greatest improvement in classification accuracy.展开更多
Conventionally,the reliability of a web portal is validated with generalized conventional methods,but they fail to provide the desired results.Therefore,we need to include other quality factors that affect reliability...Conventionally,the reliability of a web portal is validated with generalized conventional methods,but they fail to provide the desired results.Therefore,we need to include other quality factors that affect reliability such as usability for improving the reliability in addition to the conventional reliability testing.Actually,the primary objectives of web portals are to provide interactive integration of multiple functions confirming diverse requirements in an efficient way.In this paper,we employ testing profiles tomeasure the reliability through software operational profile,input space profile and usability profile along with qualitative measures of reliability and usability.Moreover,the case study used for verification is based on aweb application that facilitates information and knowledge sharing among its online members.The proposed scheme is compared with the conventional reliability improvement method in terms of failure detection and reliability.The final results unveil that the computation of reliability by using the traditional method(utilizing failure points with the assistance of Mean Time Between Failures(MTBF)and Mean Time To Failure(MTTF)becomes ineffective under certain situations.Under such situations,the proposed scheme helps to compute the reliability in an effective way.Moreover,the outcomes of the study provide insight recommendations about the testing and measurement of reliability for Web based software or applications.展开更多
Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diag...Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diagnosing and classifying brain tumors have been introduced in the literature.This paper proposes a novel multimodal brain tumor classification framework based on two-way deep learning feature extraction and a hybrid feature optimization algorithm.NasNet-Mobile,a pre-trained deep learning model,has been fine-tuned and twoway trained on original and enhancedMRI images.The haze-convolutional neural network(haze-CNN)approach is developed and employed on the original images for contrast enhancement.Next,transfer learning(TL)is utilized for training two-way fine-tuned models and extracting feature vectors from the global average pooling layer.Then,using a multiset canonical correlation analysis(CCA)method,features of both deep learning models are fused into a single feature matrix—this technique aims to enhance the information in terms of features for better classification.Although the information was increased,computational time also jumped.This issue is resolved using a hybrid feature optimization algorithm that chooses the best classification features.The experiments were done on two publicly available datasets—BraTs2018 and BraTs2019—and yielded accuracy rates of 94.8%and 95.7%,respectively.The proposedmethod is comparedwith several recent studies andoutperformed inaccuracy.In addition,we analyze the performance of each middle step of the proposed approach and find the selection technique strengthens the proposed framework.展开更多
Despite the extensive empirical literature relating to the Internet of Things (IoT), surprisingly few attempts have sought to establish the ways in which digital forensics can be applied to undertake detailed examinat...Despite the extensive empirical literature relating to the Internet of Things (IoT), surprisingly few attempts have sought to establish the ways in which digital forensics can be applied to undertake detailed examinations regarding IoT frameworks. The existing digital forensic applications have effectively held back efforts to align the IoT with digital forensic strategies. This is because the forensic applications are ill-suited to the highly complex IoT frameworks and would, therefore, struggle to amass, analyze and test the necessary evidence that would be required by a court. As such, there is a need to develop a suitable forensic framework to facilitate forensic investigations in IoT settings. Nor has considerable progress been made in terms of collecting and saving network and server logs from IoT settings to enable examinations. Consequently, this study sets out to develop and test the FB system which is a lightweight forensic framework capable of improving the scope of investigations in IoT environments. The FB system can organize the management of various IoT devices found in a smart apartment, all of which is controlled by the owner’s smart watch. This will help to perform useful functions, automate the decision-making process, and ensure that the system remains secure. A Java app is utilized to simulate the FB system, learning the user’s requirements and security expectations when installed and employing the MySQL server as a means of logging the communications of the various IoT devices.展开更多
Rumors regarding epidemic diseases such as COVID 19,medicines and treatments,diagnostic methods and public emergencies can have harmful impacts on health and political,social and other aspects of people’s lives,espec...Rumors regarding epidemic diseases such as COVID 19,medicines and treatments,diagnostic methods and public emergencies can have harmful impacts on health and political,social and other aspects of people’s lives,especially during emergency situations and health crises.With huge amounts of content being posted to social media every second during these situations,it becomes very difficult to detect fake news(rumors)that poses threats to the stability and sustainability of the healthcare sector.A rumor is defined as a statement for which truthfulness has not been verified.During COVID 19,people found difficulty in obtaining the most truthful news easily because of the huge amount of unverified information on social media.Several methods have been applied for detecting rumors and tracking their sources for COVID 19-related information.However,very few studies have been conducted for this purpose for the Arabic language,which has unique characteristics.Therefore,this paper proposes a comprehensive approach which includes two phases:detection and tracking.In the detection phase of the study carried out,several standalone and ensemble machine learning methods were applied on the Arcov-19 dataset.A new detection model was used which combined two models:The Genetic Algorithm Based Support Vector Machine(that works on users’and tweets’features)and the stacking ensemble method(that works on tweets’texts).In the tracking phase,several similarity-based techniques were used to obtain the top 1%of similar tweets to a target tweet/post,which helped to find the source of the rumors.The experiments showed interesting results in terms of accuracy,precision,recall and F1-Score for rumor detection(the accuracy reached 92.63%),and showed interesting findings in the tracking phase,in terms of ROUGE L precision,recall and F1-Score for similarity techniques.展开更多
The overall healthcare system has been prioritized within development top lists worldwide.Since many national populations are aging,combined with the availability of sophisticated medical treatments,healthcare expendi...The overall healthcare system has been prioritized within development top lists worldwide.Since many national populations are aging,combined with the availability of sophisticated medical treatments,healthcare expenditures are rapidly growing.Blood banks are a major component of any healthcare system,which store and provide the blood products needed for organ transplants,emergency medical treatments,and routine surgeries.Timely delivery of blood products is vital,especially in emergency settings.Hence,blood delivery process parameters such as safety and speed have received attention in the literature,as well as other parameters such as delivery cost.In this paper,delivery time and cost are modeled mathematically and marked as objective functions requiring simultaneous optimization.A solution is proposed based on Deep Reinforcement Learning(DRL)to address the formulated delivery functions as Multi-objective Optimization Problems(MOPs).The basic concept of the solution is to decompose the MOP into a scalar optimization sub-problems set,where each one of these sub-problems is modeled as a separate Neural Network(NN).The overall model parameters for each sub-problem are optimized based on a neighborhood parameter transfer and DRL training algorithm.The optimization step for the subproblems is undertaken collaboratively to optimize the overall model.Paretooptimal solutions can be directly obtained using the trained NN.Specifically,the multi-objective blood bank delivery problem is addressed in this research.Onemajor technical advantage of this approach is that once the trainedmodel is available,it can be scaled without the need formodel retraining.The scoring can be obtained directly using a straightforward computation of the NN layers in a limited time.The proposed technique provides a set of technical strength points such as the ability to generalize and solve rapidly compared to othermulti-objective optimizationmethods.The model was trained and tested on 5 major hospitals in Saudi Arabia’s Riyadh region,and the simulation results indicated that time and cost decreased by 35%and 30%,respectively.In particular,the proposed model outperformed other state-of-the-art MOP solutions such as Genetic Algorithms and Simulated Annealing.展开更多
Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,w...Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,which is based on a centralized,programmable controller.Therefore,monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment.Consequently,this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms:K-means,Farthest First,Canopy,Density-based algorithm,and Exception-maximization(EM),using the Waikato Environment for Knowledge Analysis(WEKA)software to compare extensively between these five algorithms.Furthermore,this paper presents an SDN-based intrusion detection system using a deep learning(DL)model with the KDD(Knowledge Discovery in Databases)dataset.First,the utilized dataset is clustered into normal and four major attack categories via the clustering process.Then,a deep learning method is projected for building an efficient SDN-based intrusion detection system.The results provide a comprehensive analysis and a flawless reasonable study of different kinds of attacks incorporated in the KDD dataset.Similarly,the outcomes reveal that the proposed deep learning method provides efficient intrusion detection performance compared to existing techniques.For example,the proposed method achieves a detection accuracy of 94.21%for the examined dataset.展开更多
Several millions of people suffer from Parkinson’s disease globally.Parkinson’s affects about 1%of people over 60 and its symptoms increase with age.The voice may be affected and patients experience abnormalities in...Several millions of people suffer from Parkinson’s disease globally.Parkinson’s affects about 1%of people over 60 and its symptoms increase with age.The voice may be affected and patients experience abnormalities in speech that might not be noticed by listeners,but which could be analyzed using recorded speech signals.With the huge advancements of technology,the medical data has increased dramatically,and therefore,there is a need to apply data mining and machine learning methods to extract new knowledge from this data.Several classification methods were used to analyze medical data sets and diagnostic problems,such as Parkinson’s Disease(PD).In addition,to improve the performance of classification,feature selection methods have been extensively used in many fields.This paper aims to propose a comprehensive approach to enhance the prediction of PD using several machine learning methods with different feature selection methods such as filter-based and wrapper-based.The dataset includes 240 recodes with 46 acoustic features extracted from3 voice recording replications for 80 patients.The experimental results showed improvements when wrapper-based features selection method was used with K-NN classifier with accuracy of 88.33%.The best obtained results were compared with other studies and it was found that this study provides comparable and superior results.展开更多
Over the past years, many businesses, government and individuals have been started to adopt the internet and web-based technologies in their works to take benefits of costs reduction and better utilization of existing...Over the past years, many businesses, government and individuals have been started to adopt the internet and web-based technologies in their works to take benefits of costs reduction and better utilization of existing resources. The cloud computing is a new way of computing which aims to provide better communication style and storage resources in a safe environment via the internet platform. The E-governments around the world are facing the continued budget challenges and increasing in the size of their computational data so that they need to find ways to deliver their services to citizens as economically as possible without compromising the achievement of desired outcomes. Considering E-government is one of the sectors that is trying to provide services via the internet so the cloud computing can be a suitable model for implementing E-government architecture to improve E-government efficiency and user satisfaction. In this paper, the adoption of cloud computing strategy in implementing E-government services has been studied by focusing on the relationship between E-government and cloud computing by listing the benefits of creation E-government based on cloud computing. Finally in this paper, the challenges faced the implementation of cloud computing for E-government are discussed in details. As a result from understanding the importance of cloud computing as new, green and cheap technology is contributed to fixing and minimizing the existing problems and challenges in E-government so that the developed and developing countries need to achieve E-government based on cloud computing.展开更多
Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such...Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such as UV absorption, pigment,photo-catalysis, pollution control systems and solar cells among others. Substitution of impurities into crystal lattice structure is the most commonly used method of tuning the band gap of TiO_2 for specific application and eventually leads to lattice distortion. This work utilizes the distortion in the lattice structure to estimate the band gap of doped TiO_2, for the first time, through hybridization of a particle swarm optimization algorithm(PSO) with a support vector regression(SVR) algorithm for developing a PSO-SVR model. The precision and accuracy of the developed PSO-SVR model was further justified by applying the model for estimating the effect of cobalt-sulfur co-doping, nickel-iodine co-doping, tungsten and indium doping on the band gap of TiO_2 and excellent agreement with the experimentally reported values was achieved. Practical implementation of the proposed PSO-SVR model would further widen the applications of the semiconductor and reduce the experimental stress involved in band gap determination of TiO_2.展开更多
基金the Researchers Supporting Project Number(RSP2023 R157),King Saud University,Riyadh,Saudi Arabia.
文摘An illness known as pneumonia causes inflammation in the lungs.Since there is so much information available fromvarious X-ray images,diagnosing pneumonia has typically proven challenging.To improve image quality and speed up the diagnosis of pneumonia,numerous approaches have been devised.To date,several methods have been employed to identify pneumonia.The Convolutional Neural Network(CNN)has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology.However,these methods are complex,inefficient,and imprecise to analyze a big number of datasets.In this paper,a new hybrid method for the automatic classification and identification of Pneumonia from chest X-ray images is proposed.The proposed method(ABOCNN)utilized theAfrican BuffaloOptimization(ABO)algorithmto enhanceCNNperformance and accuracy.The Weinmed filter is employed for pre-processing to eliminate unwanted noises from chest X-ray images,followed by feature extraction using the Grey Level Co-Occurrence Matrix(GLCM)approach.Relevant features are then selected from the dataset using the ABO algorithm,and ultimately,high-performance deep learning using the CNN approach is introduced for the classification and identification of Pneumonia.Experimental results on various datasets showed that,when contrasted to other approaches,the ABO-CNN outperforms them all for the classification tasks.The proposed method exhibits superior values like 96.95%,88%,86%,and 86%for accuracy,precision,recall,and F1-score,respectively.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23044).
文摘Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters.
基金supported by the MSIT(Ministry of Science and ICT)Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/6).
文摘Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R435),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Heart disease remains a leading cause of morbidity and mortality worldwide,highlighting the need for improved diagnostic methods.Traditional diagnostics face limitations such as reliance on single-modality data and vulnerability to apparatus faults,which can reduce accuracy,especially with poor-quality images.Additionally,these methods often require significant time and expertise,making them less accessible in resource-limited settings.Emerging technologies like artificial intelligence and machine learning offer promising solutions by integrating multi-modality data and enhancing diagnostic precision,ultimately improving patient outcomes and reducing healthcare costs.This study introduces Heart-Net,a multi-modal deep learning framework designed to enhance heart disease diagnosis by integrating data from Cardiac Magnetic Resonance Imaging(MRI)and Electrocardiogram(ECG).Heart-Net uses a 3D U-Net for MRI analysis and a Temporal Convolutional Graph Neural Network(TCGN)for ECG feature extraction,combining these through an attention mechanism to emphasize relevant features.Classification is performed using Optimized TCGN.This approach improves early detection,reduces diagnostic errors,and supports personalized risk assessments and continuous health monitoring.The proposed approach results show that Heart-Net significantly outperforms traditional single-modality models,achieving accuracies of 92.56%forHeartnetDataset Ⅰ(HNET-DSⅠ),93.45%forHeartnetDataset Ⅱ(HNET-DSⅡ),and 91.89%for Heartnet Dataset Ⅲ(HNET-DSⅢ),mitigating the impact of apparatus faults and image quality issues.These findings underscore the potential of Heart-Net to revolutionize heart disease diagnostics and improve clinical outcomes.
基金This research has been funded by Direccion General de Investigaciones of Universidad Santiago de Cali under call No.01-2021。
文摘The hepatitis B virus is the most deadly virus,which significantly affects the human liver.The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage;otherwise,it will become a severe problem and make a human liver suffer from the most dangerous diseases,such as liver cancer.In this paper,two medical diagnostic systems are developed for the diagnosis of this life-threatening virus.The methodologies used to develop thesemodels are fuzzy logic and the neuro-fuzzy technique.The diverse parameters that assist in the evaluation of performance are also determined by using the observed values from the proposed system for both developedmodels.The classification accuracy of a multilayered fuzzy inference system is 94%.The accuracy with which the developed medical diagnostic system by using Adaptive Network based Fuzzy Interference System(ANFIS)classifies the result corresponding to the given input is 95.55%.The comparison of both developed models on the basis of their performance parameters has been made.It is observed that the neuro-fuzzy technique-based diagnostic system has better accuracy in classifying the infected and non-infected patients as compared to the fuzzy diagnostic system.Furthermore,the performance evaluation concluded that the outcome given by the developed medical diagnostic system by using ANFIS is accurate and correct as compared to the developed fuzzy inference system and also can be used in hospitals for the diagnosis of Hepatitis B disease.In other words,the adaptive neuro-fuzzy inference system has more capability to classify the provided inputs adequately than the fuzzy inference system.
文摘With the rapid growth of the Internet of Things paradigm,a tremendous number of applications and services that require minimal or no human involvement have been developed to enhance the quality of everyday life in various domains.In order to ensure that such services provide their functionalities with the expected quality,it is essential tomeasure and evaluate this quality,which can be in some cases a challenging task due to the lack of human intervention and feedback.Recently,the vast majority of the Quality of Experience QoE works mainly address the multimedia services.However,the introduction of Internet of Things IoT has brought a new level of complexity into the field of QoE evaluation.With the emerging of the new IoT technologies such as machine to machine communication and artificial intelligence,there is a crucial demand to utilize additional evaluation metrics alongside the traditional subjective and objective human factors and network quality factors.In this systematic review,a comprehensive survey of the QoE evaluation in IoT is presented.It reviews the existing quality of experience definitions,influencing factors,metrics,and models.The review is concluded by identifying the current gaps in the literature and suggested some future research directions accordingly.
文摘<span style="font-family:Verdana;">Students face difficulties in programming languages learning (PLL) which encourages many scholars to investigate the factors behind that. Although there a number of positive and negative factors found to be effective in PLL procedure, utilising online tools in PLL were recognized as a positive recommended means. This motivates many researchers to provide solutions and proposals which result in a number of choices and options. However, categorising those efforts and showing what has been done, would provide a better and clear image for future studies. Therefore, this paper aims to conduct a systematic literature review to show what studies have been done and then categorise them based on the type of online tools and the aims of the research. The study follows Kitchenham and Charters guidelines for writing SLR (Systematic Literature Review). The search result reached 1390 publications between 2013-09/2018. After the filtration which has been done through selected criteria, 160 publications were found to be adequate to answer the review questions. The main results of this systematic review are categorizing the aims of the studies in online PLL tools, classifying the tools and finding the current trends of the online PLL tools.</span>
基金supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resources from the Ministry of Trade,Industry Energy,Republic ofKorea.(No.20204010600090).
文摘Anomalous situations in surveillance videos or images that may result in security issues,such as disasters,accidents,crime,violence,or terrorism,can be identified through video anomaly detection.However,differentiat-ing anomalous situations from normal can be challenging due to variations in human activity in complex environments such as train stations,busy sporting fields,airports,shopping areas,military bases,care centers,etc.Deep learning models’learning capability is leveraged to identify abnormal situations with improved accuracy.This work proposes a deep learning architecture called Anomalous Situation Recognition Network(ASRNet)for deep feature extraction to improve the detection accuracy of various anomalous image situations.The proposed framework has five steps.In the first step,pretraining of the proposed architecture is performed on the CIFAR-100 dataset.In the second step,the proposed pre-trained model and Inception V3 architecture are used for feature extraction by utilizing the suspicious activity recognition dataset.In the third step,serial feature fusion is performed,and then the Dragonfly algorithm is utilized for feature optimization in the fourth step.Finally,using optimized features,various Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based classification models are utilized to detect anomalous situations.The proposed framework is validated on the suspicious activity dataset by varying the number of optimized features from 100 to 1000.The results show that the proposed method is effective in detecting anomalous situations and achieves the highest accuracy of 99.24%using cubic SVM.
文摘The combination of spatiotemporal videos and essential features can improve the performance of human action recognition(HAR);however,the individual type of features usually degrades the performance due to similar actions and complex backgrounds.The deep convolutional neural network has improved performance in recent years for several computer vision applications due to its spatial information.This article proposes a new framework called for video surveillance human action recognition dubbed HybridHR-Net.On a few selected datasets,deep transfer learning is used to pre-trained the EfficientNet-b0 deep learning model.Bayesian optimization is employed for the tuning of hyperparameters of the fine-tuned deep model.Instead of fully connected layer features,we considered the average pooling layer features and performed two feature selection techniques-an improved artificial bee colony and an entropy-based approach.Using a serial nature technique,the features that were selected are combined into a single vector,and then the results are categorized by machine learning classifiers.Five publically accessible datasets have been utilized for the experimental approach and obtained notable accuracy of 97%,98.7%,100%,99.7%,and 96.8%,respectively.Additionally,a comparison of the proposed framework with contemporarymethods is done to demonstrate the increase in accuracy.
基金This work was funded by the Deanship of Scientific Research at Jouf University under grant No(DSR-2021-02-0379).
文摘Indoor localization methods can help many sectors,such as healthcare centers,smart homes,museums,warehouses,and retail malls,improve their service areas.As a result,it is crucial to look for low-cost methods that can provide exact localization in indoor locations.In this context,imagebased localization methods can play an important role in estimating both the position and the orientation of cameras regarding an object.Image-based localization faces many issues,such as image scale and rotation variance.Also,image-based localization’s accuracy and speed(latency)are two critical factors.This paper proposes an efficient 6-DoF deep-learning model for image-based localization.This model incorporates the channel attention module and the Scale PyramidModule(SPM).It not only enhances accuracy but also ensures the model’s real-time performance.In complex scenes,a channel attention module is employed to distinguish between the textures of the foregrounds and backgrounds.Our model adapted an SPM,a feature pyramid module for dealing with image scale and rotation variance issues.Furthermore,the proposed model employs two regressions(two fully connected layers),one for position and the other for orientation,which increases outcome accuracy.Experiments on standard indoor and outdoor datasets show that the proposed model has a significantly lower Mean Squared Error(MSE)for both position and orientation.On the indoor 7-Scenes dataset,the MSE for the position is reduced to 0.19 m and 6.25°for the orientation.Furthermore,on the outdoor Cambridge landmarks dataset,the MSE for the position is reduced to 0.63 m and 2.03°for the orientation.According to the findings,the proposed approach is superior and more successful than the baseline methods.
基金Taif University Researchers for Supporting Project number(TURSP-2020/214),Taif University,Taif Saudi Arabia.
文摘In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic algorithm)in order to improve the image segmentation.The proposed technique based on fusing the data from Particle Swarm Optimization(PSO),Cuckoo search,modification of Cuckoo Search(CS McCulloch)and Genetic algorithms are obtained for improving magnetic resonance images(MRIs)segmentation.Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods.In order to obtain parts of the points that determine similar membership values,we apply the different rules of incorporation for these groups.The proposed approach is applied to challenging applications:MRI images,gray matter/white matter of brain segmentations and original black/white images Behavior of the proposed algorithm is provided by applying to different medical images.It is shown that the proposed method gives accurate results;due to the decision fusion produces the greatest improvement in classification accuracy.
基金This study was supported by Suranaree University of Technology.
文摘Conventionally,the reliability of a web portal is validated with generalized conventional methods,but they fail to provide the desired results.Therefore,we need to include other quality factors that affect reliability such as usability for improving the reliability in addition to the conventional reliability testing.Actually,the primary objectives of web portals are to provide interactive integration of multiple functions confirming diverse requirements in an efficient way.In this paper,we employ testing profiles tomeasure the reliability through software operational profile,input space profile and usability profile along with qualitative measures of reliability and usability.Moreover,the case study used for verification is based on aweb application that facilitates information and knowledge sharing among its online members.The proposed scheme is compared with the conventional reliability improvement method in terms of failure detection and reliability.The final results unveil that the computation of reliability by using the traditional method(utilizing failure points with the assistance of Mean Time Between Failures(MTBF)and Mean Time To Failure(MTTF)becomes ineffective under certain situations.Under such situations,the proposed scheme helps to compute the reliability in an effective way.Moreover,the outcomes of the study provide insight recommendations about the testing and measurement of reliability for Web based software or applications.
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Granted Financial Resources from theMinistry of Trade,Industry&Energy,Republic of Korea(No.20204010600090).
文摘Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diagnosing and classifying brain tumors have been introduced in the literature.This paper proposes a novel multimodal brain tumor classification framework based on two-way deep learning feature extraction and a hybrid feature optimization algorithm.NasNet-Mobile,a pre-trained deep learning model,has been fine-tuned and twoway trained on original and enhancedMRI images.The haze-convolutional neural network(haze-CNN)approach is developed and employed on the original images for contrast enhancement.Next,transfer learning(TL)is utilized for training two-way fine-tuned models and extracting feature vectors from the global average pooling layer.Then,using a multiset canonical correlation analysis(CCA)method,features of both deep learning models are fused into a single feature matrix—this technique aims to enhance the information in terms of features for better classification.Although the information was increased,computational time also jumped.This issue is resolved using a hybrid feature optimization algorithm that chooses the best classification features.The experiments were done on two publicly available datasets—BraTs2018 and BraTs2019—and yielded accuracy rates of 94.8%and 95.7%,respectively.The proposedmethod is comparedwith several recent studies andoutperformed inaccuracy.In addition,we analyze the performance of each middle step of the proposed approach and find the selection technique strengthens the proposed framework.
文摘Despite the extensive empirical literature relating to the Internet of Things (IoT), surprisingly few attempts have sought to establish the ways in which digital forensics can be applied to undertake detailed examinations regarding IoT frameworks. The existing digital forensic applications have effectively held back efforts to align the IoT with digital forensic strategies. This is because the forensic applications are ill-suited to the highly complex IoT frameworks and would, therefore, struggle to amass, analyze and test the necessary evidence that would be required by a court. As such, there is a need to develop a suitable forensic framework to facilitate forensic investigations in IoT settings. Nor has considerable progress been made in terms of collecting and saving network and server logs from IoT settings to enable examinations. Consequently, this study sets out to develop and test the FB system which is a lightweight forensic framework capable of improving the scope of investigations in IoT environments. The FB system can organize the management of various IoT devices found in a smart apartment, all of which is controlled by the owner’s smart watch. This will help to perform useful functions, automate the decision-making process, and ensure that the system remains secure. A Java app is utilized to simulate the FB system, learning the user’s requirements and security expectations when installed and employing the MySQL server as a means of logging the communications of the various IoT devices.
基金This research was funded by the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University,Saudi Arabia,Grant No.(20-12-18-013).
文摘Rumors regarding epidemic diseases such as COVID 19,medicines and treatments,diagnostic methods and public emergencies can have harmful impacts on health and political,social and other aspects of people’s lives,especially during emergency situations and health crises.With huge amounts of content being posted to social media every second during these situations,it becomes very difficult to detect fake news(rumors)that poses threats to the stability and sustainability of the healthcare sector.A rumor is defined as a statement for which truthfulness has not been verified.During COVID 19,people found difficulty in obtaining the most truthful news easily because of the huge amount of unverified information on social media.Several methods have been applied for detecting rumors and tracking their sources for COVID 19-related information.However,very few studies have been conducted for this purpose for the Arabic language,which has unique characteristics.Therefore,this paper proposes a comprehensive approach which includes two phases:detection and tracking.In the detection phase of the study carried out,several standalone and ensemble machine learning methods were applied on the Arcov-19 dataset.A new detection model was used which combined two models:The Genetic Algorithm Based Support Vector Machine(that works on users’and tweets’features)and the stacking ensemble method(that works on tweets’texts).In the tracking phase,several similarity-based techniques were used to obtain the top 1%of similar tweets to a target tweet/post,which helped to find the source of the rumors.The experiments showed interesting results in terms of accuracy,precision,recall and F1-Score for rumor detection(the accuracy reached 92.63%),and showed interesting findings in the tracking phase,in terms of ROUGE L precision,recall and F1-Score for similarity techniques.
文摘The overall healthcare system has been prioritized within development top lists worldwide.Since many national populations are aging,combined with the availability of sophisticated medical treatments,healthcare expenditures are rapidly growing.Blood banks are a major component of any healthcare system,which store and provide the blood products needed for organ transplants,emergency medical treatments,and routine surgeries.Timely delivery of blood products is vital,especially in emergency settings.Hence,blood delivery process parameters such as safety and speed have received attention in the literature,as well as other parameters such as delivery cost.In this paper,delivery time and cost are modeled mathematically and marked as objective functions requiring simultaneous optimization.A solution is proposed based on Deep Reinforcement Learning(DRL)to address the formulated delivery functions as Multi-objective Optimization Problems(MOPs).The basic concept of the solution is to decompose the MOP into a scalar optimization sub-problems set,where each one of these sub-problems is modeled as a separate Neural Network(NN).The overall model parameters for each sub-problem are optimized based on a neighborhood parameter transfer and DRL training algorithm.The optimization step for the subproblems is undertaken collaboratively to optimize the overall model.Paretooptimal solutions can be directly obtained using the trained NN.Specifically,the multi-objective blood bank delivery problem is addressed in this research.Onemajor technical advantage of this approach is that once the trainedmodel is available,it can be scaled without the need formodel retraining.The scoring can be obtained directly using a straightforward computation of the NN layers in a limited time.The proposed technique provides a set of technical strength points such as the ability to generalize and solve rapidly compared to othermulti-objective optimizationmethods.The model was trained and tested on 5 major hospitals in Saudi Arabia’s Riyadh region,and the simulation results indicated that time and cost decreased by 35%and 30%,respectively.In particular,the proposed model outperformed other state-of-the-art MOP solutions such as Genetic Algorithms and Simulated Annealing.
文摘Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,which is based on a centralized,programmable controller.Therefore,monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment.Consequently,this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms:K-means,Farthest First,Canopy,Density-based algorithm,and Exception-maximization(EM),using the Waikato Environment for Knowledge Analysis(WEKA)software to compare extensively between these five algorithms.Furthermore,this paper presents an SDN-based intrusion detection system using a deep learning(DL)model with the KDD(Knowledge Discovery in Databases)dataset.First,the utilized dataset is clustered into normal and four major attack categories via the clustering process.Then,a deep learning method is projected for building an efficient SDN-based intrusion detection system.The results provide a comprehensive analysis and a flawless reasonable study of different kinds of attacks incorporated in the KDD dataset.Similarly,the outcomes reveal that the proposed deep learning method provides efficient intrusion detection performance compared to existing techniques.For example,the proposed method achieves a detection accuracy of 94.21%for the examined dataset.
基金This research was funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia under the Project Number(77/442).
文摘Several millions of people suffer from Parkinson’s disease globally.Parkinson’s affects about 1%of people over 60 and its symptoms increase with age.The voice may be affected and patients experience abnormalities in speech that might not be noticed by listeners,but which could be analyzed using recorded speech signals.With the huge advancements of technology,the medical data has increased dramatically,and therefore,there is a need to apply data mining and machine learning methods to extract new knowledge from this data.Several classification methods were used to analyze medical data sets and diagnostic problems,such as Parkinson’s Disease(PD).In addition,to improve the performance of classification,feature selection methods have been extensively used in many fields.This paper aims to propose a comprehensive approach to enhance the prediction of PD using several machine learning methods with different feature selection methods such as filter-based and wrapper-based.The dataset includes 240 recodes with 46 acoustic features extracted from3 voice recording replications for 80 patients.The experimental results showed improvements when wrapper-based features selection method was used with K-NN classifier with accuracy of 88.33%.The best obtained results were compared with other studies and it was found that this study provides comparable and superior results.
文摘Over the past years, many businesses, government and individuals have been started to adopt the internet and web-based technologies in their works to take benefits of costs reduction and better utilization of existing resources. The cloud computing is a new way of computing which aims to provide better communication style and storage resources in a safe environment via the internet platform. The E-governments around the world are facing the continued budget challenges and increasing in the size of their computational data so that they need to find ways to deliver their services to citizens as economically as possible without compromising the achievement of desired outcomes. Considering E-government is one of the sectors that is trying to provide services via the internet so the cloud computing can be a suitable model for implementing E-government architecture to improve E-government efficiency and user satisfaction. In this paper, the adoption of cloud computing strategy in implementing E-government services has been studied by focusing on the relationship between E-government and cloud computing by listing the benefits of creation E-government based on cloud computing. Finally in this paper, the challenges faced the implementation of cloud computing for E-government are discussed in details. As a result from understanding the importance of cloud computing as new, green and cheap technology is contributed to fixing and minimizing the existing problems and challenges in E-government so that the developed and developing countries need to achieve E-government based on cloud computing.
基金The support of King Fahd University of Petroleum and Minerals
文摘Energy band gap of titanium dioxide(TiO_2) semiconductor plays significant roles in many practical applications of the semiconductor and determines its appropriateness in technological and industrial applications such as UV absorption, pigment,photo-catalysis, pollution control systems and solar cells among others. Substitution of impurities into crystal lattice structure is the most commonly used method of tuning the band gap of TiO_2 for specific application and eventually leads to lattice distortion. This work utilizes the distortion in the lattice structure to estimate the band gap of doped TiO_2, for the first time, through hybridization of a particle swarm optimization algorithm(PSO) with a support vector regression(SVR) algorithm for developing a PSO-SVR model. The precision and accuracy of the developed PSO-SVR model was further justified by applying the model for estimating the effect of cobalt-sulfur co-doping, nickel-iodine co-doping, tungsten and indium doping on the band gap of TiO_2 and excellent agreement with the experimentally reported values was achieved. Practical implementation of the proposed PSO-SVR model would further widen the applications of the semiconductor and reduce the experimental stress involved in band gap determination of TiO_2.