The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples ...The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples of five wells from depths of 850 m to 3 000 m were studied. A series of comprehensive petrographic and geochemical analyses were performed to unravel the diagenetic features and their impact on the reservoir quality.Petrographically, the sandstones are dominated by feldspathic litharenites and lithic arenites with fine to medium grain sizes and moderate to good sorting. The reservoir quality varies greatly with a range of porosity from 0.2% to 36.1% and permeability from 0.016 ×10~(–3) μm~2 to 4 301 ×10~(–3) μm~2, which is attributed to complex diagenetic evolution related to sedimentary facies;these include compaction, cementation of calcite, dolomite, siderite and framboidal pyrite in eogenetic stage;further compaction, feldspar dissolution, precipitation of ferrocalcite and ankerite, quartz cements, formation of kaolinite and its illitization, precipitation of albite and nodular pyrite, as well as hydrocarbon charge in mesogenetic stage. The dissolution of feldspar and illitization of kaolinite provide internal sources for the precipitation of quartz cement, while carbonate cements are derived from external sources related to interbedded mudstones and deep fluid. Compaction is the predominant factor in reducing the total porosity, followed by carbonate cementation that leads to strong heterogeneity. Feldspar dissolution and concomitant quartz and clay cementation barely changes the porosity but significantly reduces the permeability.The high-quality reservoirs can be concluded as medium-grained sandstones lying in the central parts of thick underwater distributary channel sandbodies(>2 m) with a high content of detrital quartz but low cement.展开更多
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma...Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.展开更多
Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocompo...Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics.展开更多
To the editor:It is commonly reported that people with insomnia often experience comorbid emotional disorders,such as mood and anxiety disorders.12 A study found that fragmented rapid eye movement(REM)sleep in individ...To the editor:It is commonly reported that people with insomnia often experience comorbid emotional disorders,such as mood and anxiety disorders.12 A study found that fragmented rapid eye movement(REM)sleep in individuals with insomnia is associated with higher Beck Depression Inventory(BDI)scores.3 REM sleep architecture disruption is a typical symptom of insomnia.展开更多
To the editor:Insomnia disorder has a serious and widespread detrimental effect on humans with comorbidity with other mental or physical health problems.In recent years,noninvasive brain stimulation(NIBS)techniques,es...To the editor:Insomnia disorder has a serious and widespread detrimental effect on humans with comorbidity with other mental or physical health problems.In recent years,noninvasive brain stimulation(NIBS)techniques,especially transcranial magnetic stimulation(TMS)and transcranial electrical stimulation,have been increasingly used for the treatment of brain diseases,including insomnia disorder.展开更多
Background:Carotid intima-media thickness(IMT)and diameter,stiffness,and wave reflections,are independent and important clinical biomarkers and risk predictors for cardiovascular diseases.The purpose of the present st...Background:Carotid intima-media thickness(IMT)and diameter,stiffness,and wave reflections,are independent and important clinical biomarkers and risk predictors for cardiovascular diseases.The purpose of the present study was to establish nationwide reference values of carotid properties for healthy Chinese adults and to explore potential clinical determinants.Methods:A total of 3053 healthy Han Chinese adults(1922 women)aged 18-79 years were enrolled at 28 collaborating tertiary centers throughout China between April 2021 and July 2022.The real-time tracking of common carotid artery walls was achieved by the radio frequency(RF)ultrasound system.The IMT,diameter,compliance coefficient,βstiffness,local pulse wave velocity(PWV),local systolic blood pressure,augmented pressure(AP),and augmentation index(AIx)were then automatically measured and reported.Data were stratified by age groups and sex.The relationships between age and carotid property parameters were analyzed by Jonckheere-Terpstra test and simple linear regressions.The major clinical determinants of carotid properties were identified by Pearson’s correlation,multiple linear regression,and analyses of covariance.Results:All the parameters of carotid properties demonstrated significantly age-related trajectories.Women showed thinner IMT,smaller carotid diameter,larger AP,and AIx than men.Theβstiffness and PWV were significantly higher in men than women before forties,but the differences reversed after that.The increase rate of carotid IMT(5.5µm/year in women and 5.8µm/year in men)and diameter(0.03 mm/year in both men and women)were similar between men and women.For the stiffness and wave reflections,women showed significantly larger age-related variations than men as demonstrated by steeper regression slopes(all P for age by sex interaction<0.05).The blood pressures,body mass index(BMI),and triglyceride levels were identified as major clinical determinants of carotid properties with adjustment of age and sex.Conclusions:The age-and sex-specific reference values of carotid properties measured by RF ultrasound for healthy Chinese adults were established.The blood pressures,BMI,and triglyceride levels should be considered for clinical application of corresponding reference values.展开更多
The antigen gene of ABO blood group system,called ABO,is located on human chromosome 9,with a total length of 19.5 kb.It is the first blood group system found by human beings.[1]ABO blood group subtypes are formed by ...The antigen gene of ABO blood group system,called ABO,is located on human chromosome 9,with a total length of 19.5 kb.It is the first blood group system found by human beings.[1]ABO blood group subtypes are formed by ABO genovariation,i.e.,gene A variation for A subtype,gene B variation for B subtype and gene O variation for new O alleles.ABO subtypes contain A3,Ax,Ael,Aw,Am,B3,Bx,Bel,Bw,cis-AB,B(A).Generally,an individual with AB blood group has an A allele on one chromosome,with B allele on its paired chromosome.This phenomenon is called trans-AB.However,cis-AB is a unique ABO phenotype that A and B alleles are located on the same chromosome,so that it can be inherited by the next generation.[2]This special mode of inheritance often causes a discrepancy of ABO blood grouping and then reduces the effectiveness and safety of blood transfusion.Therefore,to accurately identify the blood group of cis-AB is a precondition for the safety of blood transfusion.[3]The serological and genotyping analysis on a case of cis-AB patient in our hospital is reported as follows.展开更多
BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE ca...BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.展开更多
TRIP980 high-strength steel plate/SPCC low-carbon steel plate were welded by RPW. The key factors such as size and material of filler were studied, and the structure, fusion ratio and mechanical properties of the RPW ...TRIP980 high-strength steel plate/SPCC low-carbon steel plate were welded by RPW. The key factors such as size and material of filler were studied, and the structure, fusion ratio and mechanical properties of the RPW joint were analyzed. The experimental results show that the calculation formulas of the length and diameter of the filler were designed reasonably. Q235 as a filler for RPW of TRIP980 high-strength steel plate/SPCC low-carbon steel plate is suitable according to schaeffler organization chart. The deposited metal of RPW joint is in the shape of “spool”,and the base metal and cap of deposited metal are alternately combined. The deposited metal has the characteristics of “locking” as rivets, which is beneficial to the improvement of mechanical properties of RPW joint. The nugget of RPW joint is uniform without deviates. TRIP980 high-strength steel plate, SPCC low-carbon steel plate, and filler were metallurgically bonded in the RPW joint.展开更多
The effect of substitution La_(2)O_(3)and YF_(3)as network modifiers respectively for Y_(2)O_(3),and ZnO as intermediate oxide for Al_(2)O_(3)on crystallization and viscous behavior of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)gl...The effect of substitution La_(2)O_(3)and YF_(3)as network modifiers respectively for Y_(2)O_(3),and ZnO as intermediate oxide for Al_(2)O_(3)on crystallization and viscous behavior of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)glass was studied.La_(2)O_(3)and YF_(3)substitution for Y_(2)O_(3)decreases the melting temperature of studied glass from 1402 to 1346 and 1379℃,and the activation energy of viscous flow decreases from 340 to 250 and 265 kJ/mol.Meanwhile,ZnO substitution for Al_(2)O_(3)decreases the melting temperature to 1379℃while increases the activation energy of viscous flow to 542 kJ/mol,due to their different role in glass structure.Substitution ZnO for Al_(2)O_(3)refines and homogenizes the crystals size and lowers crystallinity because the nucleation and crystal growth are depressed by higher activation energy of crystallization and change of crystallization mechanism from bulk crystallization to surface crystallization.Replacement of Y_(2)O_(3)by La_(2)O_(3)and YF_(3)respectively also decreases the crystallinity of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)glass ceramic due to competitive and hindering effect on the rearranged atoms,structural units and groups required by precipitated two crystals.Besides,y-Y2Si2O7,precipitation of Y4.67(SiO4)3O,ZnAl_(2)O_(4),and Y3Si3O10F were observed respectively due to incorporation of La_(2)O_(3),ZnO,and YF_(3).展开更多
We theoretically study nonlinear thermoelectric transport through a topological superconductor nanowire hosting Majorana bound states(MBSs) at its two ends, a system named as Majorana nanowire(MNW). We consider that t...We theoretically study nonlinear thermoelectric transport through a topological superconductor nanowire hosting Majorana bound states(MBSs) at its two ends, a system named as Majorana nanowire(MNW). We consider that the MNW is coupled to the left and right normal metallic leads subjected to either bias voltage or temperature gradient. We focus our attention on the sign change of nonlinear Seebeck and Peltier coefficients induced by mechanisms related to the MBSs, by which the possible existence of MBSs might be proved. Our results show that for a fixed temperature difference between the two leads, the sign of the nonlinear Seebeck coefficient(thermopower) can be reversed by changing the overlap amplitude between the MBSs or the system equilibrium temperature, which are similar to the cases in linear response regime. By optimizing the MBS–MBS interaction amplitude and system equilibrium temperature, we find that the temperature difference may also induce sign change of the nonlinear thermopower. For zero temperature difference and finite bias voltage, both the sign and magnitude of nonlinear Peltier coefficient can be adjusted by changing the bias voltage or overlap amplitude between the MBSs. In the presence of both bias voltage and temperature difference, we show that the electrical current at zero Fermi level and the states induced by overlap between the MBSs keep unchanged, regardless of the amplitude of temperature difference. We also find that the direction of the heat current driven by bias voltage may be changed by weak temperature difference.展开更多
Objective: This study was to investigate the role of hsa-miR-155-3p and hsa-miR-155-5p as biomarkers and regulators of biological behavior in Systemic Sclerosis. Methods: A total of 10 SSc patients and 10 healthy cont...Objective: This study was to investigate the role of hsa-miR-155-3p and hsa-miR-155-5p as biomarkers and regulators of biological behavior in Systemic Sclerosis. Methods: A total of 10 SSc patients and 10 healthy controls were selected for the study. The expression levels of hsa-miR-155-3p and hsa-miR-155-5p in peripheral blood mononuclear cells of SSc patients and healthy controls were measured using RT-qPCR. The diagnostic value of these miRNAs was explored using Receiver Operating Characteristic curve analysis. Pearson or Spearman correlation analysis was performed to assess the correlation between miRNAs and clinical indicators in SSc patients. Potential target genes of hsa-miR-155-3p and hsa-miR-155-5p were predicted using miRDB, Targetscan, and miRDIP databases. GO functional annotation, KEGG pathway enrichment analysis, protein-protein interaction network construction, and selection of central genes were conducted. Results: The expression levels of hsa-miR-155-3p and hsa- miR-155-5p were significantly higher in PBMCs of SSc patients compared to healthy controls (P<0.001). The ROC curve analysis showed that hsa-miR-155-3p and hsa-miR-155-5p had a high diagnostic value for SSc (AUC=1, P<0.001). Correlation analysis revealed that hsa- miR-155-3p, hsa-miR-155-5p, and clinical indicators such as high-resolution CT, neutrophil percentage, lymphocyte percentage, and albumin to globulin ratio were correlated (P<0.05). The signaling pathways enriched with target genes of hsa-miR-155-3p and hsa-miR-155- 5p were closely associated with the occurrence and development of SSc fibrosis, immunity, and inflammation. Conclusions: hsa-miR-155-3p and hsa-miR-155-5p may be involved in regulating the occurrence and development of SSc fibrosis, immunity, and inflammation. They have the potential to serve as biomarkers for clinical diagnosis and treatment of SSc.展开更多
The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermod...The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.展开更多
The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that...The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5.Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition.Y substitution for La and melt spinning make the life-span of the alloys improved remarkably,which is attributed to the improvement of anti-oxidation,anti-pulverization and anti-corrosion abilities.In addition,the discharge capacity visibly decreases with increasing the Y content,while it firstly increases and then decreases with increasing spinning rate.The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate.Moreover,all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.展开更多
La was partially substituted by Ce with the aim of improving the electrochemical hydrogen storage performances ofLa1–xCexMgNi3.5Mn0.5 (x=0, 0.1, 0.2, 0.3, 0.4) alloys, and melt spinning technology was adopted to fabr...La was partially substituted by Ce with the aim of improving the electrochemical hydrogen storage performances ofLa1–xCexMgNi3.5Mn0.5 (x=0, 0.1, 0.2, 0.3, 0.4) alloys, and melt spinning technology was adopted to fabricate the alloys. Theidentification of XRD and SEM reveals that the experimental alloys consist of a major phase LaMgNi4 and a secondary phase LaNi5.The growth of spinning rate results in that the lattice constants and cell volume increase and the grains are markedly refined. Theelectrochemical measurement shows that the as-cast and spun alloys can obtain the maximum discharge capacities just at the firstcycle without any activation needed. With the increase of spinning rate, the discharge capacities of the alloys first increase and thendecline, whereas their cycle stabilities always grow. Moreover, the electrochemical kinetic performances of the alloys first increaseand then decrease with spinning rate growing.展开更多
To obtain a better understanding the thermal stress of a rail,the thermal simulator was used to measure the expansion curves of different stresses loaded during the continuous cooling process of U75V rail.The transfor...To obtain a better understanding the thermal stress of a rail,the thermal simulator was used to measure the expansion curves of different stresses loaded during the continuous cooling process of U75V rail.The transformation plasticity model was established.The experimental results show that stress can accelerate the transformation process of pearlite.While the same cooling rate is accelerated with the increase of stress,the transformation process of pearlite is accelerated,and the proportion of plastic strain transformation in total strain increases.At the same stress,the process of transformation of pearlite decreases with the increase in cooling rate,and the proportion of transformation plastic strain in total strain decreases.When considering the transformation plasticity,the axial residual stress is more consistent with the actual working condition,the accuracy of the transformation plasticity model is higher;during the continuous cooling process,and the loading stress has a significant influence on the structure.When the stress increases,the orientation of the pearlite lamellae becomes disordered,the pearlite lamellae are bent,the lamellae spacing is no longer uniform,and the hardness is improved.展开更多
Nanocrystalline and amorphous LaMg11Ni+x%Ni(x=100,200,mass fraction)alloys were synthesized by mechanicalmilling.The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galv...Nanocrystalline and amorphous LaMg11Ni+x%Ni(x=100,200,mass fraction)alloys were synthesized by mechanicalmilling.The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system.The gaseous hydrogen absorption and desorption properties were investigated by Sievert’s apparatus and differential scanningcalorimeter(DSC)connected with a H2detector.The results indicated that increasing Ni content significantly improves the gaseousand electrochemical hydrogen storage performances of the as-milled alloys.The gaseous hydrogen absorption capacities andabsorption rates of the as-milled alloys have the maximum values with the variation of the milling time.But the hydrogen desorptionkinetics of the alloys always increases with the extending of milling time.In addition,the electrochemical discharge capacity andhigh rate discharge(HRD)ability of the as-milled alloys both increase first and then decrease with milling time prolonging.展开更多
The 1:1 water model of a twin-roll strip caster was set up based on the Froude number and the Reynolds number similarity criteria. A new type metal delivery system was designed for the twin-roll strip caster. The lev...The 1:1 water model of a twin-roll strip caster was set up based on the Froude number and the Reynolds number similarity criteria. A new type metal delivery system was designed for the twin-roll strip caster. The level fluctuation and the fluid flow in the pool of the water model were measured using the level detector and the 3D-LDV (laser Doppler velocimetry) technology. It is shown that a wedged delivery system can produce the desirable level fluctuation and even fluid flow distribution in the pool Numerical simulations for the water model were performed. Comparisons between the numerical and physical simulation results show good agreement near the side dams.展开更多
The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimenta...The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K).展开更多
Ultrahigh strength Al-12Zn-2.4Mg-1.1Cu-0.20Zr-0.30Sc-0.30Ni alloy billets were fabricated by spray deposition method(the Osprey process). The effect of homogenization treatment on the microstructures and tensile prope...Ultrahigh strength Al-12Zn-2.4Mg-1.1Cu-0.20Zr-0.30Sc-0.30Ni alloy billets were fabricated by spray deposition method(the Osprey process). The effect of homogenization treatment on the microstructures and tensile properties were investigated by OM, SEM and EDS. The results show that adding small amount of Sc and Zr can greatly refine the grain size of the billet, with the average grain size of 10 μm. Grain-boundary becomes coarser firstly and then thinner under different homogenizing condition and grain coarsening were observed. The solute elements content of Zn inside grains has a peak at 490 ℃ /2 h, and Cu element, which was solved into matrix, can enhance the matrix hardness obviously during homogenization. The suitable homogenizing treatment is 460~490 °C/2 h for the hot extrusion of the studied alloy; after the optimized solid solution and T6 aging, the highest ultimate tensile strength (UTS) is 858 MPa with a ductility of 4.8%.展开更多
基金The National Natural Science Foundation of China under contract No. 42262020the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under contract No. NJZY22445。
文摘The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples of five wells from depths of 850 m to 3 000 m were studied. A series of comprehensive petrographic and geochemical analyses were performed to unravel the diagenetic features and their impact on the reservoir quality.Petrographically, the sandstones are dominated by feldspathic litharenites and lithic arenites with fine to medium grain sizes and moderate to good sorting. The reservoir quality varies greatly with a range of porosity from 0.2% to 36.1% and permeability from 0.016 ×10~(–3) μm~2 to 4 301 ×10~(–3) μm~2, which is attributed to complex diagenetic evolution related to sedimentary facies;these include compaction, cementation of calcite, dolomite, siderite and framboidal pyrite in eogenetic stage;further compaction, feldspar dissolution, precipitation of ferrocalcite and ankerite, quartz cements, formation of kaolinite and its illitization, precipitation of albite and nodular pyrite, as well as hydrocarbon charge in mesogenetic stage. The dissolution of feldspar and illitization of kaolinite provide internal sources for the precipitation of quartz cement, while carbonate cements are derived from external sources related to interbedded mudstones and deep fluid. Compaction is the predominant factor in reducing the total porosity, followed by carbonate cementation that leads to strong heterogeneity. Feldspar dissolution and concomitant quartz and clay cementation barely changes the porosity but significantly reduces the permeability.The high-quality reservoirs can be concluded as medium-grained sandstones lying in the central parts of thick underwater distributary channel sandbodies(>2 m) with a high content of detrital quartz but low cement.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51764046 and 52160013)the Inner Mongolia Autonomous Region Postgraduate Research Innovation Project of China (Grant No. S20231165Z)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China (Grant Nos. 2023RCTD016 and 2024RCTD008)。
文摘Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.
基金the National Natural Science Foundation of China(Nos.51871125,51761032,52001005 and 51731002)Major Science and Technology Innovation Projects in Shandong Province(No.2019JZZY010320)for financial support of the work.
文摘Mg-based hydrides are too stable and the kinetics of hydrogen absorption and desorption is not satisfactory.An efficient way to improve these shortcomings is to employ reactive ball milling to synthesize the nanocomposite materials of Mg and additives.In this experiment,TiF_(3)was selected as an additive,and the mechanical milling method was employed to prepare the experimental alloys.The alloys used in this experiment were the as-cast Ce_(5)Mg_(85)Ni_(10),as-milled Ce_(5)Mg_(85)Ni_(10)and Ce_(5)Mg_(85)Ni_(10)+3 wt.%TiF3.The phase transformation,structural evolution,isothermal and non-isothermal hydrogenation and dehydrogenation performances of the alloys were inspected by XRD,SEM,TEM,Sievert apparatus,DSC and TGA.It revealed that nanocrystalline appeared in the as-milled samples.Compared with the as-cast alloy,ball milling made the particle dimension and grain size decrease dramatically and the defect density increase significantly.The addition of TiF_(3)made the surface of ball milling alloy particles markedly coarser and more irregular.Ball milling and adding TiF_(3)distinctly improved the activation and kinetics of the alloys.Moreover,ball milling along with TiF_(3)can decrease the onset dehydrogenation temperature of Mg-based hydrides and slightly ameliorate their thermodynamics.
基金This work is supported by the National Natural Science Foundation of China(grant/award numbers:81871430,81871426,U22A20303,82260359)Hebei Provincial Natural Science Foundation(grant/award numbers:H2020206263,H2020206625)STI2030-Major Projects Program(grant/award number:2022ZD0214500).
文摘To the editor:It is commonly reported that people with insomnia often experience comorbid emotional disorders,such as mood and anxiety disorders.12 A study found that fragmented rapid eye movement(REM)sleep in individuals with insomnia is associated with higher Beck Depression Inventory(BDI)scores.3 REM sleep architecture disruption is a typical symptom of insomnia.
基金the National Natural Science Foundation of China(81871426,81871430,82260359,U22A20303)Hebei Provincial Natural Science Foundation(H2020206263,H2020206625)STI2030-Major Projects Program(2022ZD0214500).
文摘To the editor:Insomnia disorder has a serious and widespread detrimental effect on humans with comorbidity with other mental or physical health problems.In recent years,noninvasive brain stimulation(NIBS)techniques,especially transcranial magnetic stimulation(TMS)and transcranial electrical stimulation,have been increasingly used for the treatment of brain diseases,including insomnia disorder.
基金supported by the grants from the Key Research and Development Program of Shaanxi Province(No.2023-ZDLSF-22)National Key R&D Program of China(No.2023YFA1801200)+4 种基金National Natural Science Foundation of China(Nos.81901751 and 82272010)Key Clinical Trial Program of Tangdu Hospital(No.2021LCYJ006)Program for Innovative Research Team of Shaanxi Province(No.2020TD-038)Top Talent Program of Tangdu Hospital and Innovative Talent Support Program of Shaanxi Province(No.2022KJXX-106)the Special Fund for Aerospace Medical Research.
文摘Background:Carotid intima-media thickness(IMT)and diameter,stiffness,and wave reflections,are independent and important clinical biomarkers and risk predictors for cardiovascular diseases.The purpose of the present study was to establish nationwide reference values of carotid properties for healthy Chinese adults and to explore potential clinical determinants.Methods:A total of 3053 healthy Han Chinese adults(1922 women)aged 18-79 years were enrolled at 28 collaborating tertiary centers throughout China between April 2021 and July 2022.The real-time tracking of common carotid artery walls was achieved by the radio frequency(RF)ultrasound system.The IMT,diameter,compliance coefficient,βstiffness,local pulse wave velocity(PWV),local systolic blood pressure,augmented pressure(AP),and augmentation index(AIx)were then automatically measured and reported.Data were stratified by age groups and sex.The relationships between age and carotid property parameters were analyzed by Jonckheere-Terpstra test and simple linear regressions.The major clinical determinants of carotid properties were identified by Pearson’s correlation,multiple linear regression,and analyses of covariance.Results:All the parameters of carotid properties demonstrated significantly age-related trajectories.Women showed thinner IMT,smaller carotid diameter,larger AP,and AIx than men.Theβstiffness and PWV were significantly higher in men than women before forties,but the differences reversed after that.The increase rate of carotid IMT(5.5µm/year in women and 5.8µm/year in men)and diameter(0.03 mm/year in both men and women)were similar between men and women.For the stiffness and wave reflections,women showed significantly larger age-related variations than men as demonstrated by steeper regression slopes(all P for age by sex interaction<0.05).The blood pressures,body mass index(BMI),and triglyceride levels were identified as major clinical determinants of carotid properties with adjustment of age and sex.Conclusions:The age-and sex-specific reference values of carotid properties measured by RF ultrasound for healthy Chinese adults were established.The blood pressures,BMI,and triglyceride levels should be considered for clinical application of corresponding reference values.
文摘The antigen gene of ABO blood group system,called ABO,is located on human chromosome 9,with a total length of 19.5 kb.It is the first blood group system found by human beings.[1]ABO blood group subtypes are formed by ABO genovariation,i.e.,gene A variation for A subtype,gene B variation for B subtype and gene O variation for new O alleles.ABO subtypes contain A3,Ax,Ael,Aw,Am,B3,Bx,Bel,Bw,cis-AB,B(A).Generally,an individual with AB blood group has an A allele on one chromosome,with B allele on its paired chromosome.This phenomenon is called trans-AB.However,cis-AB is a unique ABO phenotype that A and B alleles are located on the same chromosome,so that it can be inherited by the next generation.[2]This special mode of inheritance often causes a discrepancy of ABO blood grouping and then reduces the effectiveness and safety of blood transfusion.Therefore,to accurately identify the blood group of cis-AB is a precondition for the safety of blood transfusion.[3]The serological and genotyping analysis on a case of cis-AB patient in our hospital is reported as follows.
基金The Health Science and Technology Foundation of Inner Mongolia,No.202201436Science and Technology Innovation Foundation of Inner Mongolia,No.CXYD2022BT01.
文摘BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.
基金Funded by the Inner Mongolia Autonomous Region Science and Technology Program (No. 2023YFHH0036)the Basic Scientific Research Fees for Colleges and Universities Directly under the Inner Mongolia (No. 2023QNJS002)。
文摘TRIP980 high-strength steel plate/SPCC low-carbon steel plate were welded by RPW. The key factors such as size and material of filler were studied, and the structure, fusion ratio and mechanical properties of the RPW joint were analyzed. The experimental results show that the calculation formulas of the length and diameter of the filler were designed reasonably. Q235 as a filler for RPW of TRIP980 high-strength steel plate/SPCC low-carbon steel plate is suitable according to schaeffler organization chart. The deposited metal of RPW joint is in the shape of “spool”,and the base metal and cap of deposited metal are alternately combined. The deposited metal has the characteristics of “locking” as rivets, which is beneficial to the improvement of mechanical properties of RPW joint. The nugget of RPW joint is uniform without deviates. TRIP980 high-strength steel plate, SPCC low-carbon steel plate, and filler were metallurgically bonded in the RPW joint.
基金the National Natural Science Foundation of China(No.51974168)the Science and Technology Major Project of Inner Mongolia Autonomous Region in China(Nos.2019ZD023 and 2021ZD0028)the State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2020-08)。
文摘The effect of substitution La_(2)O_(3)and YF_(3)as network modifiers respectively for Y_(2)O_(3),and ZnO as intermediate oxide for Al_(2)O_(3)on crystallization and viscous behavior of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)glass was studied.La_(2)O_(3)and YF_(3)substitution for Y_(2)O_(3)decreases the melting temperature of studied glass from 1402 to 1346 and 1379℃,and the activation energy of viscous flow decreases from 340 to 250 and 265 kJ/mol.Meanwhile,ZnO substitution for Al_(2)O_(3)decreases the melting temperature to 1379℃while increases the activation energy of viscous flow to 542 kJ/mol,due to their different role in glass structure.Substitution ZnO for Al_(2)O_(3)refines and homogenizes the crystals size and lowers crystallinity because the nucleation and crystal growth are depressed by higher activation energy of crystallization and change of crystallization mechanism from bulk crystallization to surface crystallization.Replacement of Y_(2)O_(3)by La_(2)O_(3)and YF_(3)respectively also decreases the crystallinity of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)glass ceramic due to competitive and hindering effect on the rearranged atoms,structural units and groups required by precipitated two crystals.Besides,y-Y2Si2O7,precipitation of Y4.67(SiO4)3O,ZnAl_(2)O_(4),and Y3Si3O10F were observed respectively due to incorporation of La_(2)O_(3),ZnO,and YF_(3).
基金Project supported by the National Natural Science Foundation of China(Grant No.12264037)the Innovation Team of Colleges and Universities in Guangdong Province(Grant No.2021KCXTD040)+2 种基金Guangdong Province Education Department(Grant No.2023KTSCX174)the Key Laboratory of Guangdong Higher Education Institutes(Grant No.2023KSYS011)Science and Technology Bureau of Zhongshan(Grant No.2023B2035)。
文摘We theoretically study nonlinear thermoelectric transport through a topological superconductor nanowire hosting Majorana bound states(MBSs) at its two ends, a system named as Majorana nanowire(MNW). We consider that the MNW is coupled to the left and right normal metallic leads subjected to either bias voltage or temperature gradient. We focus our attention on the sign change of nonlinear Seebeck and Peltier coefficients induced by mechanisms related to the MBSs, by which the possible existence of MBSs might be proved. Our results show that for a fixed temperature difference between the two leads, the sign of the nonlinear Seebeck coefficient(thermopower) can be reversed by changing the overlap amplitude between the MBSs or the system equilibrium temperature, which are similar to the cases in linear response regime. By optimizing the MBS–MBS interaction amplitude and system equilibrium temperature, we find that the temperature difference may also induce sign change of the nonlinear thermopower. For zero temperature difference and finite bias voltage, both the sign and magnitude of nonlinear Peltier coefficient can be adjusted by changing the bias voltage or overlap amplitude between the MBSs. In the presence of both bias voltage and temperature difference, we show that the electrical current at zero Fermi level and the states induced by overlap between the MBSs keep unchanged, regardless of the amplitude of temperature difference. We also find that the direction of the heat current driven by bias voltage may be changed by weak temperature difference.
基金National Natural Science Foundation of China(No.8186029481860295)Natural Science Foundation of Inner Mongolia Autonomous Region(No.2019MS080552021MS08045)Science and Technology Plan Project of Inner Mongolia Autonomous Region(No.2018020892019GG052)。
文摘Objective: This study was to investigate the role of hsa-miR-155-3p and hsa-miR-155-5p as biomarkers and regulators of biological behavior in Systemic Sclerosis. Methods: A total of 10 SSc patients and 10 healthy controls were selected for the study. The expression levels of hsa-miR-155-3p and hsa-miR-155-5p in peripheral blood mononuclear cells of SSc patients and healthy controls were measured using RT-qPCR. The diagnostic value of these miRNAs was explored using Receiver Operating Characteristic curve analysis. Pearson or Spearman correlation analysis was performed to assess the correlation between miRNAs and clinical indicators in SSc patients. Potential target genes of hsa-miR-155-3p and hsa-miR-155-5p were predicted using miRDB, Targetscan, and miRDIP databases. GO functional annotation, KEGG pathway enrichment analysis, protein-protein interaction network construction, and selection of central genes were conducted. Results: The expression levels of hsa-miR-155-3p and hsa- miR-155-5p were significantly higher in PBMCs of SSc patients compared to healthy controls (P<0.001). The ROC curve analysis showed that hsa-miR-155-3p and hsa-miR-155-5p had a high diagnostic value for SSc (AUC=1, P<0.001). Correlation analysis revealed that hsa- miR-155-3p, hsa-miR-155-5p, and clinical indicators such as high-resolution CT, neutrophil percentage, lymphocyte percentage, and albumin to globulin ratio were correlated (P<0.05). The signaling pathways enriched with target genes of hsa-miR-155-3p and hsa-miR-155- 5p were closely associated with the occurrence and development of SSc fibrosis, immunity, and inflammation. Conclusions: hsa-miR-155-3p and hsa-miR-155-5p may be involved in regulating the occurrence and development of SSc fibrosis, immunity, and inflammation. They have the potential to serve as biomarkers for clinical diagnosis and treatment of SSc.
基金financial supports from the Inner Mongolia Natural Science Foundation,China (No.2019BS05005)the Inner Mongolia University of Science and Technology Innovation Fund,China (No.2019QDL-B11)the National Natural Science Foundation of China (Nos.51901105, 51871125, 51761032).
文摘The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.
基金Projects(51761032,51471054)supported by the National Natural Science Foundation of ChinaProject(2015MS0558)supported by the Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5.Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition.Y substitution for La and melt spinning make the life-span of the alloys improved remarkably,which is attributed to the improvement of anti-oxidation,anti-pulverization and anti-corrosion abilities.In addition,the discharge capacity visibly decreases with increasing the Y content,while it firstly increases and then decreases with increasing spinning rate.The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate.Moreover,all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.
基金Projects(51371094,51471054)supported by the National Natural Science Foundation of China
文摘La was partially substituted by Ce with the aim of improving the electrochemical hydrogen storage performances ofLa1–xCexMgNi3.5Mn0.5 (x=0, 0.1, 0.2, 0.3, 0.4) alloys, and melt spinning technology was adopted to fabricate the alloys. Theidentification of XRD and SEM reveals that the experimental alloys consist of a major phase LaMgNi4 and a secondary phase LaNi5.The growth of spinning rate results in that the lattice constants and cell volume increase and the grains are markedly refined. Theelectrochemical measurement shows that the as-cast and spun alloys can obtain the maximum discharge capacities just at the firstcycle without any activation needed. With the increase of spinning rate, the discharge capacities of the alloys first increase and thendecline, whereas their cycle stabilities always grow. Moreover, the electrochemical kinetic performances of the alloys first increaseand then decrease with spinning rate growing.
基金Funded by the Inner Mongolia Science and Technology Major Project(No.ZDZX2018024)the Natural Science Foundation of Inner Mongolia(No.2019LH05016)+1 种基金the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China(No.NJZY20089)the Innovation Fund of Inner Mongolia University of Science and Technology(No.2019QDL-B06)。
文摘To obtain a better understanding the thermal stress of a rail,the thermal simulator was used to measure the expansion curves of different stresses loaded during the continuous cooling process of U75V rail.The transformation plasticity model was established.The experimental results show that stress can accelerate the transformation process of pearlite.While the same cooling rate is accelerated with the increase of stress,the transformation process of pearlite is accelerated,and the proportion of plastic strain transformation in total strain increases.At the same stress,the process of transformation of pearlite decreases with the increase in cooling rate,and the proportion of transformation plastic strain in total strain decreases.When considering the transformation plasticity,the axial residual stress is more consistent with the actual working condition,the accuracy of the transformation plasticity model is higher;during the continuous cooling process,and the loading stress has a significant influence on the structure.When the stress increases,the orientation of the pearlite lamellae becomes disordered,the pearlite lamellae are bent,the lamellae spacing is no longer uniform,and the hardness is improved.
基金Projects(51161015,51371094,51471054) supported by the National Natural Science Foundation of China
文摘Nanocrystalline and amorphous LaMg11Ni+x%Ni(x=100,200,mass fraction)alloys were synthesized by mechanicalmilling.The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system.The gaseous hydrogen absorption and desorption properties were investigated by Sievert’s apparatus and differential scanningcalorimeter(DSC)connected with a H2detector.The results indicated that increasing Ni content significantly improves the gaseousand electrochemical hydrogen storage performances of the as-milled alloys.The gaseous hydrogen absorption capacities andabsorption rates of the as-milled alloys have the maximum values with the variation of the milling time.But the hydrogen desorptionkinetics of the alloys always increases with the extending of milling time.In addition,the electrochemical discharge capacity andhigh rate discharge(HRD)ability of the as-milled alloys both increase first and then decrease with milling time prolonging.
基金This work was financially supported by the National Natural Science Foundation of Inner Mongolia of China (No.200408020715).
文摘The 1:1 water model of a twin-roll strip caster was set up based on the Froude number and the Reynolds number similarity criteria. A new type metal delivery system was designed for the twin-roll strip caster. The level fluctuation and the fluid flow in the pool of the water model were measured using the level detector and the 3D-LDV (laser Doppler velocimetry) technology. It is shown that a wedged delivery system can produce the desirable level fluctuation and even fluid flow distribution in the pool Numerical simulations for the water model were performed. Comparisons between the numerical and physical simulation results show good agreement near the side dams.
基金Projects(51761032,51471054) supported by the National Natural Science Foundation of China
文摘The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K).
基金Colleges and Universities Scientific Research Fund of Inner Mongolia (NJ06083)
文摘Ultrahigh strength Al-12Zn-2.4Mg-1.1Cu-0.20Zr-0.30Sc-0.30Ni alloy billets were fabricated by spray deposition method(the Osprey process). The effect of homogenization treatment on the microstructures and tensile properties were investigated by OM, SEM and EDS. The results show that adding small amount of Sc and Zr can greatly refine the grain size of the billet, with the average grain size of 10 μm. Grain-boundary becomes coarser firstly and then thinner under different homogenizing condition and grain coarsening were observed. The solute elements content of Zn inside grains has a peak at 490 ℃ /2 h, and Cu element, which was solved into matrix, can enhance the matrix hardness obviously during homogenization. The suitable homogenizing treatment is 460~490 °C/2 h for the hot extrusion of the studied alloy; after the optimized solid solution and T6 aging, the highest ultimate tensile strength (UTS) is 858 MPa with a ductility of 4.8%.