The influence of heating cycles during plasma metal inert gas (MIG) welding on the microstructure and corrosion properties of the AA5754 automotive alloy has been investigated. The high heat input during plasma-MIG we...The influence of heating cycles during plasma metal inert gas (MIG) welding on the microstructure and corrosion properties of the AA5754 automotive alloy has been investigated. The high heat input during plasma-MIG welding results in a significant modification in the microstructure of the AA5754 alloy adjacent to the fusion boundaries. As a consequence of partial melting of the Al-Fe-Mn-(Si) intermetallics at the partially melted zone (PMZ) and segregation of the high melting point elements (particularly Fe and Mn) toward the fusion zone, severe galvanic corrosion attacks can be enhanced along the PMZ of the AA5754 weld during exposure to aqueous corrosion environments.展开更多
The caustic etching behaviour of the automotive AA6111 alloy with different aging conditions that simulate the various levels of heat input within the heat affected zone during the welding heating cycles has been inve...The caustic etching behaviour of the automotive AA6111 alloy with different aging conditions that simulate the various levels of heat input within the heat affected zone during the welding heating cycles has been investigated. The alloy dissolution rate was found to substantially increase with the pre-aging temperature, which enhances precipitation of the cathodic Q-phase and results in depletion of the alloy solid solution in magnesium and silicon. On the other hand, enhancing the kinetics of precipitation at high temperatures induces a more uniform distribution the Q-phase precipitates, which minimizes the potential difference between the interiors and boundaries of the adjacent grains. This was observed to reduce the severity of the surface topography developed by subsequent caustic etching surface pre-treatment.展开更多
文摘The influence of heating cycles during plasma metal inert gas (MIG) welding on the microstructure and corrosion properties of the AA5754 automotive alloy has been investigated. The high heat input during plasma-MIG welding results in a significant modification in the microstructure of the AA5754 alloy adjacent to the fusion boundaries. As a consequence of partial melting of the Al-Fe-Mn-(Si) intermetallics at the partially melted zone (PMZ) and segregation of the high melting point elements (particularly Fe and Mn) toward the fusion zone, severe galvanic corrosion attacks can be enhanced along the PMZ of the AA5754 weld during exposure to aqueous corrosion environments.
文摘The caustic etching behaviour of the automotive AA6111 alloy with different aging conditions that simulate the various levels of heat input within the heat affected zone during the welding heating cycles has been investigated. The alloy dissolution rate was found to substantially increase with the pre-aging temperature, which enhances precipitation of the cathodic Q-phase and results in depletion of the alloy solid solution in magnesium and silicon. On the other hand, enhancing the kinetics of precipitation at high temperatures induces a more uniform distribution the Q-phase precipitates, which minimizes the potential difference between the interiors and boundaries of the adjacent grains. This was observed to reduce the severity of the surface topography developed by subsequent caustic etching surface pre-treatment.