期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Regulating the non-effective carriers transport for high-performance lithium metal batteries
1
作者 Simeng Wang Youchun Yu +2 位作者 Shaotong Fu Hongtao Li Jiajia Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期132-141,共10页
The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development o... The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development of lithium metal batteries.Herein,a separator complexion consisting of polyacrylonitrile(PAN)nanofiber and MIL-101(Cr)particles prepared by electrospinning is proposed to bind the anions from the electrolyte utilizing abundant effective open metal sites in the MIL-101(Cr)particles to modulate the transport of non-effective carriers.The binding effect of the PANM separator promotes uniform lithium metal deposition and enhances the stability of the SEI layer and long cycling stability of ultra-high nickel layered oxide cathodes.Taking PANM as the Li||NCM96 separator enables high-voltage cycling stability,maintaining 72%capacity retention after 800 cycles at a charging and discharging rate of 0.2 C at a cut-off voltage of 4.5 V and 0°C.Meanwhile,the excellent high-rate performance delivers a specific capacity of 156.3 mA h g^(-1) at 10 C.In addition,outstanding cycling performance is realized from−20 to 60°C.The separator engineering facilitates the electrochemical performance of lithium metal batteries and enlightens a facile and promising strategy to develop fast charge/discharge over a wide range of temperatures. 展开更多
关键词 Functional separators Metal-organic frameworks 3D continuous ion transport networks ELECTROSPINNING Lithium metal batteries
下载PDF
Effect of Mo and ZrO_(2)nanoparticles addition on interfacial properties and shear strength of Sn58Bi/Cu solder joint
2
作者 Amares SINGH Hui Leng CHOO +1 位作者 Wei Hong TAN Rajkumar DURAIRAJ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2619-2628,共10页
The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(... The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints were analysed using a scanning electron microscope(SEM)coupled with energy dispersive X-ray(EDX)and the X-ray diffraction(XRD).Intermetallic compounds(IMCs)of MoSn_(2)are detected in the Sn58Bi+Mo/Cu solder joint,while SnZr,Zr_(5)Sn_(3),ZrCu and ZrSn_(2)are detected in Sn58Bi+ZrO_(2)/Cu solder joint.IMC layers for both composite solders comprise of Cu_(6)Sn_(5) and Cu_(3)Sn.The SEM images of these layers were used to measure the IMC layer’s thickness.The average IMC layer’s thickness is 1.4431μm for Sn58Bi+Mo/Cu and 0.9112μm for Sn58Bi+ZrO_(2)/Cu solder joints.Shear strength of the solder joints was investigated via the single shear lap test method.The average maximum load and shear stress of the Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints are increased by 33%and 69%,respectively,as compared to those of the Sn58Bi/Cu solder joint.By comparing both composite solder joints,the latter prevails better as adding smaller sized ZrO_(2)nanoparticles improves the interfacial properties granting a stronger solder joint. 展开更多
关键词 lead-free solder interfacial microstructure IMC layer thickness shear strength dislocation density ZrO_(2)nanoparticles Mo nanoparticles
下载PDF
Long‐life lithium batteries enabled by a pseudo‐oversaturated electrolyte
3
作者 Youchun Yu Simeng Wang +6 位作者 Juyan Zhang Weiwei Qian Nana Zhang Guangjie Shao Haiyan Bian Yuwen Liu Lan Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期115-127,共13页
The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging f... The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging for the liquid electrolyte.Herein,a novel pseudo‐oversaturated electrolyte(POSE)is prepared by introducing 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether(TTE)to adjust the coordination structure between diglyme(G2)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI).Surprisingly,although TTE shows little solubility to LiTFSI,the molar ratio between LiTFSI and G2 in the POSE can be increased to 1:1,which is much higher than that of the saturation state,1:2.8.Simulation and experimental results prove that TTE promotes closer contact of the G2 molecular with Li^(+)in the POSE.Moreover,it also participates in the formation of electrolyte/electrode interphases.The electrolyte shows outstanding compatibility with both the Li metal anode and typical high‐voltage cathodes.Li||Li symmetric cells show a long life of more than 2000 h at 1 mA cm^(−2),1 mAh cm^(−2).In the meantime,Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cell with the POSE shows a high reversible capacity of 134.8 mAh g^(−1 )after 900 cycles at 4.5 V,1 C rate.The concept of POSE can provide new insight into the Li^(+)solvation structure and in the design of advanced electrolytes for LMBs. 展开更多
关键词 high voltage lithium metal batteries pseudo‐oversaturated electrolyte solid electrolyte interphases(SEI) solvation structure
下载PDF
Spatial-Resolution Independent Object Detection Framework for Aerial Imagery
4
作者 Sidharth Samanta Mrutyunjaya Panda +2 位作者 Somula Ramasubbareddy SSankar Daniel Burgos 《Computers, Materials & Continua》 SCIE EI 2021年第8期1937-1948,共12页
Earth surveillance through aerial images allows more accurate identification and characterization of objects present on the surface from space and airborne platforms.The progression of deep learning and computer visio... Earth surveillance through aerial images allows more accurate identification and characterization of objects present on the surface from space and airborne platforms.The progression of deep learning and computer vision methods and the availability of heterogeneous multispectral remote sensing data make the field more fertile for research.With the evolution of optical sensors,aerial images are becoming more precise and larger,which leads to a new kind of problem for object detection algorithms.This paper proposes the“Sliding Region-based Convolutional Neural Network(SRCNN),”which is an extension of the Faster Region-based Convolutional Neural Network(RCNN)object detection framework to make it independent of the image’s spatial resolution and size.The sliding box strategy is used in the proposed model to segment the image while detecting.The proposed framework outperforms the state-of-the-art Faster RCNN model while processing images with significantly different spatial resolution values.The SRCNN is also capable of detecting objects in images of any size. 展开更多
关键词 Computer vision deep learning multispectral images remote sensing object detection convolutional neural network faster RCNN sliding box strategy
下载PDF
Enhancing single-cell encapsulation in droplet microfluidics with fine-tunable on-chip sample enrichment
5
作者 Tao Tang Hao Zhao +2 位作者 Shaofei Shen Like Yang Chwee Teck Lim 《Microsystems & Nanoengineering》 SCIE EI CSCD 2024年第1期149-160,共12页
Single-cell encapsulation in droplet microfluidics is commonly hindered by the tradeoff between cell suspension density and on-chip focusing performance.In this study,we introduce a novel droplet microfluidic chip to ... Single-cell encapsulation in droplet microfluidics is commonly hindered by the tradeoff between cell suspension density and on-chip focusing performance.In this study,we introduce a novel droplet microfluidic chip to overcome this challenge.The chip comprises a double spiral focusing unit,a flow resistance-based sample enrichment module with fine-tunable outlets,and a crossflow droplet generation unit.Utilizing a low-density cell/bead suspension(2×10^(6) objects/mL),cells/beads are focused into a near-equidistant linear arrangement within the double spiral microchannel.The excess water phase is diverted while cells/beads remain focused and sequentially encapsulated in individual droplets.Focusing performance was assessed through numerical simulations and experiments at three flow rates(40,60,80μL/min),demonstrating successful focusing at 40 and 80μL/min for beads and cells,respectively.In addition,both simulation and experimental results revealed that the flow resistance at the sample enrichment module is adjustable by punching different outlets,allowing over 50%of the aqueous phase to be removed.YOLOv8n-based droplet detection algorithms realized the counting of cells/beads in droplets,statistically demonstrating single-cell and bead encapsulation rates of 72.2%and 79.2%,respectively.All the results indicate that this on-chip sample enrichment approach can be further developed and employed as a critical component in single-cell encapsulation in water-in-oil droplets. 展开更多
关键词 BEADS OUTLET sample
原文传递
Mechano-responsive hydrogel for direct stem cell manufacturing to therapy 被引量:1
6
作者 Yufeng Shou Ling Liu +11 位作者 Qimin Liu Zhicheng Le Khang Leng Lee Hua Li Xianlei Li Dion Zhanyun Koh Yuwen Wang Tong Ming Liu Zheng Yang Chwee Teck Lim Christine Cheung Andy Tay 《Bioactive Materials》 SCIE CSCD 2023年第6期387-400,共14页
Bone marrow-derived mesenchymal stem cell(MSC)is one of the most actively studied cell types due to its regenerative potential and immunomodulatory properties.Conventional cell expansion methods using 2D tissue cultur... Bone marrow-derived mesenchymal stem cell(MSC)is one of the most actively studied cell types due to its regenerative potential and immunomodulatory properties.Conventional cell expansion methods using 2D tissue culture plates and 2.5D microcarriers in bioreactors can generate large cell numbers,but they compromise stem cell potency and lack mechanical preconditioning to prepare MSC for physiological loading expected in vivo.To overcome these challenges,in this work,we describe a 3D dynamic hydrogel using magneto-stimulation for direct MSC manufacturing to therapy.With our technology,we found that dynamic mechanical stimulation(DMS)enhanced matrix-integrinβ1 interactions which induced MSCs spreading and proliferation.In addition,DMS could modulate MSC biofunctions including directing MSC differentiation into specific lineages and boosting paracrine activities(e.g.,growth factor secretion)through YAP nuclear localization and FAK-ERK pathway.With our magnetic hydrogel,complex procedures from MSC manufacturing to final clinical use,can be integrated into one single platform,and we believe this‘all-in-one’technology could offer a paradigm shift to existing standards in MSC therapy. 展开更多
关键词 Mesenchymal stem cell Dynamic mechanical stimulation Magnetic hydrogel Stem cell manufacturing Cell therapy
原文传递
Microbial resistance to nanotechnologies:An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants 被引量:2
7
作者 Zhuoran Wu Brian Chan +3 位作者 Jessalyn Low Justin Jang Hann Chu Hwee Weng Dennis Hey Andy Tay 《Bioactive Materials》 SCIE 2022年第10期249-270,共22页
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery.Recent developments in advanced antimicrobial nanotechnologies provide num... Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery.Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms.With tunable physicochemical properties,nanomaterials can be designed to be bactericidal,antifouling,immunomodulating,and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy.Despite its substantial advancement,an important,but under-explored area,is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies.This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections. 展开更多
关键词 Bacterial infection Orthopaedic implant Microbial resistance NANOMATERIAL Antimicrobial nanotechnology
原文传递
Highly insulating thermoplastic blends comprising a styrenic copolymer for direct‐current power cable insulation
8
作者 Yingwei Ouyang Amir Masoud Pourrahimi +8 位作者 IdaÖstergren Marcus Mellqvist JakobÅnevall Azadeh Soroudi Anja Lund Xiangdong Xu Thomas Gkourmpis Per‐Ola Hagstrand Christian Müller 《High Voltage》 SCIE EI 2022年第2期251-259,共9页
The impact of the composition of blends comprising low‐density polyethylene(LDPE),isotactic polypropylene(PP)and a styrenic copolymer additive on the thermomechanical properties as well as the direct‐current(DC)elec... The impact of the composition of blends comprising low‐density polyethylene(LDPE),isotactic polypropylene(PP)and a styrenic copolymer additive on the thermomechanical properties as well as the direct‐current(DC)electrical and thermal conductivity is investigated.The presence of 5 weight percent(wt%)of the styrenic copolymer strongly reduces the amount of PP that is needed to enhance the storage modulus above the melting temperature of LDPE from 40 to 24 wt%.At the same time,the copolymer improves the consistency of the thermomechanical properties of the resulting ternary blends.While both the DC electrical and thermal conductivity strongly decrease with PP content,the addition of the styrenic copolymer appears to have little influence on either property.Evidently,PP in combination with small amounts of a styrenic copolymer not only allows to reinforce LDPE at elevated temperatures but also functions as an electrical conductivity‐reducing additive,which makes such thermoplastic ternary formulations possible candidates for the insulation of high‐voltage power cables. 展开更多
关键词 property. BLENDS COPOLYMER
原文传递
Nutritional quality and health benefits of microgreens,a crop of modern agriculture
9
作者 Yanqi Zhang Zhenlei Xiao +2 位作者 Emily Ager Lingyan Kong Libo Tan 《Journal of Future Foods》 2021年第1期58-66,共9页
Microgreens are young,tender greens that are used to enhance the color,texture,or flavor of salads and main dishes.They can be grown in small scales and indoors,making them widely adopted by controlled environment agr... Microgreens are young,tender greens that are used to enhance the color,texture,or flavor of salads and main dishes.They can be grown in small scales and indoors,making them widely adopted by controlled environment agriculture,an indoor farming practice is particularly important for feeding increasing urban populations.Besides,microgreens are attracting more consumers’attention due to their high nutritional value and unique sensory characteristics.This review focuses on the nutrition quality,sensory evaluation,pre-and post-harvest interventions,and health benefits of microgreens.Microgreens are rich in vitamins(e.g.,VC),minerals(e.g.,copper and zinc),and phytochemicals,including carotenoids and phenolic compounds,which act as antioxidants in human body.Pre-harvest interventions,such as illumination,salinity stress,nutrient fortification,and natural substrates,infl uence the photosynthetic and metabolic activities of microgreens and were shown to improve their nutritional quality,while the effects varied among species.After harvesting,packaging method and storage temperature can infl uence the nutrient retention in microgreens.Both in vitro and in vivo studies have shown that microgreens have anti-infl ammatory,anti-cancer,anti-bacterial,and anti-hyperglycemia properties,making it a new functional food beneficial to human health.The sensory attributes and overall acceptability and liking of microgreens are primarily infl uenced by their phytochemical content.Microgreens are only getting popular during the last decades and research on microgreens is still at its early stage.More studies are warranted to optimize the pre-and post-harvest practices for nutrient enhancement and retention and to explore the potential health benefits of different microgreens for the prevention and treatment of chronic diseases. 展开更多
关键词 Microgreen NUTRITION ANTIOXIDANT Preharvest POSTHARVEST Health benefits
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部