A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies ...A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model, gray level l , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.展开更多
This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial esti...This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.展开更多
This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and feature...This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features, they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.展开更多
This paper described an ontology based multi agent knowledge process made (MAKM) which is one of multi agents systems (MAS) and uses semantic network to describe agents to help to locate relative agents distributed in...This paper described an ontology based multi agent knowledge process made (MAKM) which is one of multi agents systems (MAS) and uses semantic network to describe agents to help to locate relative agents distributed in the workgroup. In MAKM, an agent is the entity to implement the distributed task processing and to access the information or knowledge. Knowledge query manipulation language (KQML) is adapted to realize the communication among agents. So using the MAKM mode, different knowledge and information on the medical domain could be organized and utilized efficiently when a collaborative task is implemented on the web.展开更多
A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This pape...A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This paper proposed incorporating spatial information into visual feature, and yields a reliable likelihood description of the observation and prediction. A similarity-ratio is defined to evaluate the effectivity of different similarity measurements in weighing samples. The experimental results demonstrate the effective and robust performance compared with the histogram based tracking in traffic scenes.展开更多
An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-neares...An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective.展开更多
We present a novel watermarking approach based on classification for authentication, in which a watermark is embedded into the host image. When the marked image is modified, the extracted watermark is also different t...We present a novel watermarking approach based on classification for authentication, in which a watermark is embedded into the host image. When the marked image is modified, the extracted watermark is also different to the original watermark, and different kinds of modification lead to different extracted watermarks. In this paper, different kinds of modification are considered as classes, and we used classification algorithm to recognize the modifications with high probability. Simulation results show that the proposed method is potential and effective.展开更多
文摘A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model, gray level l , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.
文摘This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.
基金Shanghai Science and Technology Devel-opm ent Funds ( No.0 2 DZ15 0 0 1)
文摘This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features, they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.
基金National Natural Science Foundation of China (No. 6993 10 10 )
文摘This paper described an ontology based multi agent knowledge process made (MAKM) which is one of multi agents systems (MAS) and uses semantic network to describe agents to help to locate relative agents distributed in the workgroup. In MAKM, an agent is the entity to implement the distributed task processing and to access the information or knowledge. Knowledge query manipulation language (KQML) is adapted to realize the communication among agents. So using the MAKM mode, different knowledge and information on the medical domain could be organized and utilized efficiently when a collaborative task is implemented on the web.
文摘A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This paper proposed incorporating spatial information into visual feature, and yields a reliable likelihood description of the observation and prediction. A similarity-ratio is defined to evaluate the effectivity of different similarity measurements in weighing samples. The experimental results demonstrate the effective and robust performance compared with the histogram based tracking in traffic scenes.
文摘An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective.
文摘We present a novel watermarking approach based on classification for authentication, in which a watermark is embedded into the host image. When the marked image is modified, the extracted watermark is also different to the original watermark, and different kinds of modification lead to different extracted watermarks. In this paper, different kinds of modification are considered as classes, and we used classification algorithm to recognize the modifications with high probability. Simulation results show that the proposed method is potential and effective.