The kinds and the distribution of the coal in China were investigated. The results indicate that the 80% coal in China is suitable to produce the fue1 used in the fuel cell by the method of coal gasification. Then thi...The kinds and the distribution of the coal in China were investigated. The results indicate that the 80% coal in China is suitable to produce the fue1 used in the fuel cell by the method of coal gasification. Then this paper is intended to analysis the possibility of utilization and development of tlle coal fired fuel cell power plant in China, that is composed of the molten carbonate fuel cell (MCFC) and the gas produced by the coal gasification technology. And an MCFC ST (steam turbine) combined generating system was designed, in which the coal gasification is used as the fuel. Its total generating efficiency is about 60%, more than that of the coal fired power plant.展开更多
The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEM...The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEMFC) system involve thermody namics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematic al model and control online. This paper analyzed the characters of the PEMFC; an d used the approach and self-study ability of artificial neural networks to bui ld the model of nonlinear system, and adopted the adaptive neural-networks fuzz y infer system to build the temperature model of PEMFC which is used as the refe rence model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment. The resu lts of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system.展开更多
Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating t...Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.展开更多
文摘The kinds and the distribution of the coal in China were investigated. The results indicate that the 80% coal in China is suitable to produce the fue1 used in the fuel cell by the method of coal gasification. Then this paper is intended to analysis the possibility of utilization and development of tlle coal fired fuel cell power plant in China, that is composed of the molten carbonate fuel cell (MCFC) and the gas produced by the coal gasification technology. And an MCFC ST (steam turbine) combined generating system was designed, in which the coal gasification is used as the fuel. Its total generating efficiency is about 60%, more than that of the coal fired power plant.
基金High Technology Research and Develop-ment(863) Program(No.2003AA517020)
文摘The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEMFC) system involve thermody namics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematic al model and control online. This paper analyzed the characters of the PEMFC; an d used the approach and self-study ability of artificial neural networks to bui ld the model of nonlinear system, and adopted the adaptive neural-networks fuzz y infer system to build the temperature model of PEMFC which is used as the refe rence model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment. The resu lts of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system.
文摘Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.