期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p)heterojunction solar cells
1
作者 乔治 冀建利 +2 位作者 张彦立 刘虎 李同锴 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期534-540,共7页
P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on... P-type silicon heterojunction(SHJ) solar cells with a-SiC:H(n) emitters were studied by numerical computer simulation in this paper. The influence of interface states, conduction band offset, and front contact on the performance of a-SiC:H(n)/c-Si(p) SHJ solar cells was investigated systematically. It is shown that the open circuit voltage(Voc) and fill factor(F F) are very sensitive to these parameters. In addition, by analyzing equilibrium energy band diagram and electric field distribution, the influence mechanisms that interface states, conduction band offset, and front contact impact on the carrier transport, interface recombination and cell performance were studied in detail. Finally, the optimum parameters for the a-SiC:H(n)/c-Si(p) SHJ solar cells were provided. By employing these optimum parameters, the efficiency of SHJ solar cell based on p-type c-Si was significantly improved. 展开更多
关键词 silicon heterojunction solar cells interface states band offset front contact
下载PDF
Controllable growth of type-II Dirac semimetal PtTe2 atomic layer on Au substrate for sensitive room temperature terahertz photodetection 被引量:1
2
作者 Yang Yang Kaixuan Zhang +8 位作者 Libo Zhang Guo Hong Chao Chen Hongmei Jing Jiangbo Lu Peng Wang Xiaoshuang Chen Lin Wang Hua Xu 《InfoMat》 SCIE CAS 2021年第6期705-715,共11页
Platinum telluride(PtTe_(2)),a member of metallic transition metal dichalcogenides,provides a new platform for investigating various properties such as type-II Dirac fermions,topological superconductivity,and wide-ban... Platinum telluride(PtTe_(2)),a member of metallic transition metal dichalcogenides,provides a new platform for investigating various properties such as type-II Dirac fermions,topological superconductivity,and wide-band photodetection.However,the study of PtTe_(2)is largely limited to exfoliated flakes,and its direct synthesis remains challenging.Herein,we report the controllable synthesis of highly crystalline 2D PtTe_(2)crystals with tunable morphology and thickness via chemical vapor deposition(CVD)growth on Au substrate.By adjusting Te amount and substrate temperature,anisotropic and isotropic growth modes of PtTe_(2)were realized on the solid and molten Au substrates,respectively.The domain size of PtTe_(2)crystal was achieved up to 30μm,and its thickness can be tuned from 5.6 to 50 nm via controlling the growth time.Furthermore,a metal–PtTe_(2)–metal structural device was fabricated to validate the wide-band terahertz(THz)photodetection from 0.04 to 0.3 THz at room temperature.Owing to the high crystallinity of PtTe_(2)crystal,the photodetector acquires high responsivity(30–250 mA W-1 from 0.12 to 0.3 THz),fast response rate(rise time:7μs,decay time:8μs),and high-quality imaging ability.Our work demonstrates the feasibility for realistic exploitation of high-performing photodetection system at THz band based on the CVDgrown 2D Dirac semimetal materials. 展开更多
关键词 2D materials chemical vapor deposition Dirac semimetal platinum telluride terahertz photodetection
原文传递
Optical processes of photonic band gap structure withdressing field in atomic system
3
作者 Yun-Zhe Zhang Zhe Liu +4 位作者 Kang-Ning Cai Hua Zhong Wei-Tao Zhang Jun-Feng Liu Yan-Peng Zhang 《Frontiers of physics》 SCIE CSCD 2016年第6期143-148,共6页
We experimentally investigate probe transmission signals (PTS), the four-wave mixing photonic band gap signal (FWM BGS), and the fluorescence signal (FLS) in an inverted Y-type four level atomic system. For the first ... We experimentally investigate probe transmission signals (PTS), the four-wave mixing photonic band gap signal (FWM BGS), and the fluorescence signal (FLS) in an inverted Y-type four level atomic system. For the first time, we compare the FLS of the two ground-state hyperfine levels of Rb 85. In particular, the second-order and the fourth-order fluorescence signals perform dramatic dressing discrepancies under the two hyperfine levels. Moreover, we find that the dressing field has some dressing effects on three such types of signals. Therefore, we demonstrate that the characteristics of PTS, FWM BGS, and FLS can be controlled by frequency detunings, the powers or phases of the dressing field. Such research could have potential applications in optical diodes, amplifiers, and quantum information processing. 展开更多
关键词 four-wave mixing electromagnetically induced transparency photonic band gap
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部