Kissing bonds are defects in the adhesive bonds with intimate contact of touching surface but considerably lowered shear strength. Their detection specifically in the aerospace area is so not satisfactory. Usually, ki...Kissing bonds are defects in the adhesive bonds with intimate contact of touching surface but considerably lowered shear strength. Their detection specifically in the aerospace area is so not satisfactory. Usually, kissing bonds are inconspicuous in ultrasonic C-scans. However, the determination of attributes in the time domain and the frequency domain of an ultrasound signal provides the opportunity to derive a pattern for bonded area. Deviations from the pattern found in inconspicuous bonding areas indicate kissing bonds. The survey described here deals with the manufacturing of adhesively joint samples that purposefully include kissing bonds, as well as potential solutions for detecting them through ultrasonic testing combined with pattern recognition. The properties of the epoxy-based adhesive were varied by changing the mixing ratios between resin and hardener. Samples with a mixing ratio far apart from the manufacturer’s recommendation with an inconspicuous appearance in a C-scan, but low shear strength values were taken for further evaluation. After a definition and learning phase, a 100 percent hit rate to separate good bondings from kissing bonds could be derived in a blind test. The discriminating feature found is due to the frequency shift between good and kissing bonds as well as the relative amplitude of the second peak.展开更多
With the development of power-by-wire technology for more electric aircraft,the electromechanical actuator(EMA)has the advantages to replace the conventional hydraulic servo actuator in some aerospace flight controls....With the development of power-by-wire technology for more electric aircraft,the electromechanical actuator(EMA)has the advantages to replace the conventional hydraulic servo actuator in some aerospace flight controls.Conventional hydraulically powered trimmable horizontal stabilizer actuation(THSA)system is nowadays developed to be electrically supplied.Given their safety-criticality,no-back mechanism and redundant load paths are utilized to meet the flight control requirements.However,rare literatures have introduced these functions and addressed the virtual prototyping activities from system-level point of view.This paper proposed such a model of a THSA system with dual electric power sources and fault-tolerant mechanical load paths.The nonlinear effects of components are considered with realism,and system-level simulation test is conducted to support the model-based system engineering(MBSE)approach.The models are developed with a power view instead of a pure signal view.Focusing on the friction effect and compliance effect with backlash or preload,some improved and novel approaches are adopted for these crucial components and validated via experimental results.Meanwhile,the implemented systemlevel model enables injection of crucial faults.Finally,the simulation of the proposed model shows that it is an efficient resource to investigate the actuator’s dynamic performance,to virtually prove that the actuator meets the fail/safe constraint,and to demonstrate the soundness of the fault monitoring functions.展开更多
The tribo-characteristics of metal forming at high temperatures have not yet been well understood due to the complex nature of thermal,microstructural,interaction,and process parameters.This is a review paper on the e...The tribo-characteristics of metal forming at high temperatures have not yet been well understood due to the complex nature of thermal,microstructural,interaction,and process parameters.This is a review paper on the effects of temperature,coating,and lubrication to the tribological characteristics in hot forming as well as the tribometers for different metal forming processes at elevated temperatures mainly based on the experimental work.The tribological behaviors of oxides in hot forming,such as rolling and stamping,were reviewed and presented.Some commonly used surface coatings and lubricants in hot forming were given.Many types of tribometer were selected and presented and some of them provided a great potential to characterize friction and wear at elevated temperatures.Nevertheless,more testing conditions should be further investigated by developing new tribometers.Eventually,experimental results obtained from reliable tribometers could be used in theory and model developments for different forming processes and materials at high temperatures.The review also showed the great potential in further investigations and innovation in tribology.展开更多
This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack ...This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack propagation in fuselage panels where the model parameters are unknown and the crack propagation is affected by different types of uncertainties. The coupled method is composed of two steps. The first step employs EKF to estimate the unknown model parameters and the current damage state. In the second step, the proposed efficient linearization method is applied to compute analytically the statistical distribution of the damage evolution path in some future time. A numerical case study is implemented to evaluate the performance of the proposed method. The results show that the coupled EKF-linearization method provides satisfactory results: the EKF algorithm well identifies the model parameters, and the linearization method gives comparable prediction results to Monte Carlo(MC) method while leading to very significant computational cost saving. The proposed prognostics method for fatigue crack growth can be used for developing predictive maintenance strategy for an aircraft fleet, in which case, the computational cost saving is significantly meaningful.展开更多
The continuous growth in the manufacture of aerospace components such as blisks has led to an increase in the application of different hybrid materials fabricating methods,and thus the requirements for joining and str...The continuous growth in the manufacture of aerospace components such as blisks has led to an increase in the application of different hybrid materials fabricating methods,and thus the requirements for joining and strengthening of dissimilar welds.According to this goal,selective laser melted(SLM)Inconel718 was joined with forged AD730^(TM)Nickel-based superalloy through linear friction welding(LFW)in this study.Microstructure variation,specifically with respect to secondary phases precipitation was investigated.The microhardness and strengthening mechanisms of the weldment were also studied.The precipitation(volume fraction and size of particles)at different regions of both sides of the weld line was characterized.Close to the weld line,the dissolution ofγ’/γ"and Laves phases and grain refinement occurred which reveals the effects of both compression strain and high temperature on recrystallization and high degree of elemental diffusion in the weld zone(WZ).It is shown that the size,volume fraction,and shape of secondary phases increased and changed(from spherical to long-striped for Laves particles)as we went from the WZ toward the base metal.However,the measured microhardness indicated that the strength of AD730^(TM)alloy depends significantly on the grain size,while strength in SLM Inconel 718 was dominated by shape(or size)and the presence of secondary phases(γ’/γ"and Laves).展开更多
This paper deals with the modelling and simulation of aircraft systems, in particular for power transmission and control. It is intended to review, propose and disseminate best practices for making model-based/simulat...This paper deals with the modelling and simulation of aircraft systems, in particular for power transmission and control. It is intended to review, propose and disseminate best practices for making model-based/simulation-aided engineering more efficient at any phase of the system life cycle. The proposals are aimed at creating value, not only by increasing the performance of the product under study but also by shortening the time to market, capitalizing knowledge, mitigating risks and facilitating concurrent engineering. The needs associated with the engineering activities are firstly identified to define a set of requirements for the models. Then, these requirements are used to drive the considerations leading to model development, focusing in particular on the process,modelled physical effects, modelling level, model architecting and concurrent engineering. The third part deals with the model implementation, giving special consideration to the different types of models, causalities, parameterization, implementation and verification. Each part is illustrated by examples related to safety critical actuators.展开更多
文摘Kissing bonds are defects in the adhesive bonds with intimate contact of touching surface but considerably lowered shear strength. Their detection specifically in the aerospace area is so not satisfactory. Usually, kissing bonds are inconspicuous in ultrasonic C-scans. However, the determination of attributes in the time domain and the frequency domain of an ultrasound signal provides the opportunity to derive a pattern for bonded area. Deviations from the pattern found in inconspicuous bonding areas indicate kissing bonds. The survey described here deals with the manufacturing of adhesively joint samples that purposefully include kissing bonds, as well as potential solutions for detecting them through ultrasonic testing combined with pattern recognition. The properties of the epoxy-based adhesive were varied by changing the mixing ratios between resin and hardener. Samples with a mixing ratio far apart from the manufacturer’s recommendation with an inconspicuous appearance in a C-scan, but low shear strength values were taken for further evaluation. After a definition and learning phase, a 100 percent hit rate to separate good bondings from kissing bonds could be derived in a blind test. The discriminating feature found is due to the frequency shift between good and kissing bonds as well as the relative amplitude of the second peak.
基金supported by the National Natural Science Foundation of China(No.52275062)the Fundamental Research Funds for the Central Universities of Beihang University(YWF-22-L-912).
文摘With the development of power-by-wire technology for more electric aircraft,the electromechanical actuator(EMA)has the advantages to replace the conventional hydraulic servo actuator in some aerospace flight controls.Conventional hydraulically powered trimmable horizontal stabilizer actuation(THSA)system is nowadays developed to be electrically supplied.Given their safety-criticality,no-back mechanism and redundant load paths are utilized to meet the flight control requirements.However,rare literatures have introduced these functions and addressed the virtual prototyping activities from system-level point of view.This paper proposed such a model of a THSA system with dual electric power sources and fault-tolerant mechanical load paths.The nonlinear effects of components are considered with realism,and system-level simulation test is conducted to support the model-based system engineering(MBSE)approach.The models are developed with a power view instead of a pure signal view.Focusing on the friction effect and compliance effect with backlash or preload,some improved and novel approaches are adopted for these crucial components and validated via experimental results.Meanwhile,the implemented systemlevel model enables injection of crucial faults.Finally,the simulation of the proposed model shows that it is an efficient resource to investigate the actuator’s dynamic performance,to virtually prove that the actuator meets the fail/safe constraint,and to demonstrate the soundness of the fault monitoring functions.
文摘The tribo-characteristics of metal forming at high temperatures have not yet been well understood due to the complex nature of thermal,microstructural,interaction,and process parameters.This is a review paper on the effects of temperature,coating,and lubrication to the tribological characteristics in hot forming as well as the tribometers for different metal forming processes at elevated temperatures mainly based on the experimental work.The tribological behaviors of oxides in hot forming,such as rolling and stamping,were reviewed and presented.Some commonly used surface coatings and lubricants in hot forming were given.Many types of tribometer were selected and presented and some of them provided a great potential to characterize friction and wear at elevated temperatures.Nevertheless,more testing conditions should be further investigated by developing new tribometers.Eventually,experimental results obtained from reliable tribometers could be used in theory and model developments for different forming processes and materials at high temperatures.The review also showed the great potential in further investigations and innovation in tribology.
基金partially funded by the National Natural Science Foundation of China (No.51805262)
文摘This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack propagation in fuselage panels where the model parameters are unknown and the crack propagation is affected by different types of uncertainties. The coupled method is composed of two steps. The first step employs EKF to estimate the unknown model parameters and the current damage state. In the second step, the proposed efficient linearization method is applied to compute analytically the statistical distribution of the damage evolution path in some future time. A numerical case study is implemented to evaluate the performance of the proposed method. The results show that the coupled EKF-linearization method provides satisfactory results: the EKF algorithm well identifies the model parameters, and the linearization method gives comparable prediction results to Monte Carlo(MC) method while leading to very significant computational cost saving. The proposed prognostics method for fatigue crack growth can be used for developing predictive maintenance strategy for an aircraft fleet, in which case, the computational cost saving is significantly meaningful.
基金The authors gratefully acknowledge the support from the Natural Sciences and Engineering Research Council of Canada(NSERC)2018–03889 through a Discovery Grant.Thanks to Mr.Adrien Lieurey(IMT-Mines Albi ICA-site Albi)for his involvement and fabrication of SLM parts.They would also like to express their gratitude to Aubert&Duval Co.,Dr.Alexandre Devaux,and Prof.Cormier for providing forged AD730™samples and discussions on the definition of the scope of the project.Special thanks to TWI Ltd.for carrying out the LFW of the samples.
文摘The continuous growth in the manufacture of aerospace components such as blisks has led to an increase in the application of different hybrid materials fabricating methods,and thus the requirements for joining and strengthening of dissimilar welds.According to this goal,selective laser melted(SLM)Inconel718 was joined with forged AD730^(TM)Nickel-based superalloy through linear friction welding(LFW)in this study.Microstructure variation,specifically with respect to secondary phases precipitation was investigated.The microhardness and strengthening mechanisms of the weldment were also studied.The precipitation(volume fraction and size of particles)at different regions of both sides of the weld line was characterized.Close to the weld line,the dissolution ofγ’/γ"and Laves phases and grain refinement occurred which reveals the effects of both compression strain and high temperature on recrystallization and high degree of elemental diffusion in the weld zone(WZ).It is shown that the size,volume fraction,and shape of secondary phases increased and changed(from spherical to long-striped for Laves particles)as we went from the WZ toward the base metal.However,the measured microhardness indicated that the strength of AD730^(TM)alloy depends significantly on the grain size,while strength in SLM Inconel 718 was dominated by shape(or size)and the presence of secondary phases(γ’/γ"and Laves).
文摘This paper deals with the modelling and simulation of aircraft systems, in particular for power transmission and control. It is intended to review, propose and disseminate best practices for making model-based/simulation-aided engineering more efficient at any phase of the system life cycle. The proposals are aimed at creating value, not only by increasing the performance of the product under study but also by shortening the time to market, capitalizing knowledge, mitigating risks and facilitating concurrent engineering. The needs associated with the engineering activities are firstly identified to define a set of requirements for the models. Then, these requirements are used to drive the considerations leading to model development, focusing in particular on the process,modelled physical effects, modelling level, model architecting and concurrent engineering. The third part deals with the model implementation, giving special consideration to the different types of models, causalities, parameterization, implementation and verification. Each part is illustrated by examples related to safety critical actuators.