期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Functional Kernel Estimation of the Conditional Extreme Quantile under Random Right Censoring
1
作者 Justin Ushize Rutikanga Aliou Diop 《Open Journal of Statistics》 2021年第1期162-177,共16页
The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many... The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span> 展开更多
关键词 Kernel Estimator Functional Data Censored Data Conditional Extreme Quantile Heavy-Tailed Distributions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部