期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Efficacy and safety of anlotinib combined with the STUPP regimen in patients with newly diagnosed glioblastoma: a multicenter, single-arm, phase Ⅱ trial
1
作者 Shuzhen Lai Peijing Li +15 位作者 Xiaohui Liu Guihong Liu Tieming Xie Xing Zhang Xiaoxuan Wang Jing Huang Yiqiang Tang Zhigang Liu Guoping Shen Chaoming Li Fangxiao Lu Lei Wang Fagui Jiang Caixing Sun Yuanyuan Chen Ming Chen 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第5期433-444,共12页
Objective:Glioblastomas are highly vascularized malignant tumors.We determined the efficacy and safety of the anti-angiogenic multi-kinase inhibitor,anlotinib,for a newly diagnosed glioblastoma.Methods:This multicente... Objective:Glioblastomas are highly vascularized malignant tumors.We determined the efficacy and safety of the anti-angiogenic multi-kinase inhibitor,anlotinib,for a newly diagnosed glioblastoma.Methods:This multicenter,single-arm trial(NCT04119674)enrolled 33 treatment-naïve patients with histologically proven glioblastomas between March 2019 and November 2020.Patients underwent treatment with the standard STUPP regimen[fractionated focal irradiation in daily fractions of 1.8-2 Gy given 5 d/w×6 w(total=54-60 Gy)]or radiotherapy plus continuous daily temozolomide(TMZ)(75 mg/m^(2)of body surface area/d,7 d/w from the first to the last day of radiotherapy),followed by 6 cycles of adjuvant TMZ(150-200 mg/m^(2)×5 d during each 28-d cycle)plus anlotinib(8 mg/d on d 1-14 of each 3-w cycle for 2 cycles during concomitant chemoradiotherapy,8 maximal cycles as adjuvant therapy,followed by maintenance at 8 mg/d.The primary endpoint was progression-free survival(PFS).Secondary endpoints included overall survival(OS)and adverse events(AEs).Results:Thirty-three patients received the planned treatment.The median PFS was 10.9 months(95%CI,9.9-18.7 months)and the 12-month PFS rate was 48.5%.The median OS was 17.4 months(95%CI,14.5-21.1 months)and the 12-month OS rate was 81.8%.The most common AEs included hypertriglyceridemia[58%(n=19)],hypoalbuminemia[46%(n=15)],and hypercholesterolemia[46%(n=15)]during concurrent chemoradiotherapy and leukopenia[73%(n=24)],hypertriglyceridemia[67%(n=22)],and neutropenia[52%(n=17)]during adjuvant therapy.Five patients discontinued treatment due to AEs.HEG1(HR,5.6;95%CI,1.3-23.7;P=0.021)and RP1L1 alterations(HR,11.1;95%CI,2.2-57.2;P=0.004)were associated with a significantly shorter PFS.Conclusions:Anlotinib plus the STUPP regimen has promising anti-tumor activity against glioblastoma and manageable toxicity.HEG1 and RP1L1 alterations might be novel predictive biomarkers of the response to anlotinib. 展开更多
关键词 GLIOBLASTOMA ANTI-ANGIOGENESIS multi-kinase inhibitor anlotinib TEMOZOLOMIDE progression-free survival
下载PDF
A nanocomposite competent to overcome cascade drug resistance in ovarian cancer via mitochondria dysfunction and NO gas synergistic therapy
2
作者 Min Zhong Peiqin Liang +9 位作者 Zhenzhen Feng Xin Yang Guang Li Rui Sun Lijuan He Jinxiu Tan Yangpengcheng Xiao Zhiqiang Yu Muhua Yi Xuefeng Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第6期144-156,共13页
Ovarian cancer(OC)is one of the most common and recurring malignancies in gynecology.Patients with relapsed OC always develop"cascade drug resistance"(CDR)under repeated chemotherapy,leading to subsequent fa... Ovarian cancer(OC)is one of the most common and recurring malignancies in gynecology.Patients with relapsed OC always develop"cascade drug resistance"(CDR)under repeated chemotherapy,leading to subsequent failure of chemotherapy.To overcome this challenge,amphiphiles(P1)carrying a nitric oxide(NO)donor(Isosorbide 5-mononitrate,ISMN)and high-density disulfide are synthesized for encapsulatingmitochondria-targeted tetravalent platinum prodrug(TPt)to construct a nanocomposite(INP@TPt).Mechanism studies indicated that INP@TPt significantly inhibited drug-resistant cells by increasing cellular uptake and mitochondrial accumulation of platinum,depleting glutathione,and preventing apoptosis escape through generating highly toxic peroxynitrite anion(ONOO−).To better replicate the microenvironmental and histological characteristics of the drug resistant primary tumor,an OC patient-derived tumor xenograft(PDXOC)model in BALB/c nude mice was established.INP@TPt showed the best therapeutic effects in the PDXOC model.The corresponding tumor tissues contained high ONOO−levels,which were attributed to the simultaneous release of O_(2)^(·−)and NO in tumor tissues.Taken together,INP@TPtbased systematic strategy showed considerable potential and satisfactory biocompatibility in overcoming platinum CDR,providing practical applications for ovarian therapy. 展开更多
关键词 Cisplatin resistance Patient-derived xenograft model Mitochondrial dysfunction Nitric oxide Ovarian cancer
下载PDF
COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer:An allicin-based nanomedicine approach
3
作者 Huijiao Fu Peiqin Liang +8 位作者 Qianwen Chen Yan Wang Guang Li Xuzi Cai Shengtao Wang Kun Chen Shengying Shi Zhiqiang Yu Xuefeng Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期449-454,共6页
Recently,the utilization of nonsteroidal anti-inflammatory drugs(NSAIDs)to sensitize cisplatin(CDDP)has gained substantial traction in the treatment of ovarian cancer(OC).However,even widely employed NSAIDs such as ce... Recently,the utilization of nonsteroidal anti-inflammatory drugs(NSAIDs)to sensitize cisplatin(CDDP)has gained substantial traction in the treatment of ovarian cancer(OC).However,even widely employed NSAIDs such as celecoxib and naproxen carry an elevated risk of cardiovascular events,notably throm-bosis.Furthermore,the diminished sensitivity to CDDP therapy in OC is multifactorial,rendering the ap-plication of NSAIDs only partially effective due to their cyclooxygenase-2(COX-2)inhibiting mechanism.Hence,in this study,reactive oxygen species(ROS)-responsive composite nano-hydrangeas loaded with the Chinese medicine small molecule allicin and platinum(IV)prodrug(DTP@AP NPs)were prepared to achieve comprehensive chemosensitization.On one front,allicin achieved COX-2 blocking therapy,en-compassing the inhibition of proliferation,angiogenesis and endothelial mesenchymal transition(EMT),thereby mitigating the adverse impacts of CDDP chemotherapy.Simultaneously,synergistic chemosensi-tization was achieved from multifaceted mechanisms by decreasing CDDP inactivation,damaging mito-chondria and inhibiting DNA repair.In essence,these findings provided an optimized approach for syner-gizing CDDP with COX-2 inhibitors,offering a promising avenue for enhancing OC treatment outcomes. 展开更多
关键词 COX-2 blocking therapy CDDP CHEMOSENSITIZATION ALLICIN Ovarian cancer
原文传递
Gallbladder carcinoma: prognostic factors and therapeutic options 被引量:49
4
作者 Thorsten Oliver Goetze 《World Journal of Gastroenterology》 SCIE CAS 2015年第43期12211-12217,共7页
The outcome of gallbladder carcinoma is poor,and the overall 5-year survival rate is less than 5%. In early-stage disease,a 5-year survival rate up to 75% can be achieved if stage-adjusted therapy is performed. There ... The outcome of gallbladder carcinoma is poor,and the overall 5-year survival rate is less than 5%. In early-stage disease,a 5-year survival rate up to 75% can be achieved if stage-adjusted therapy is performed. There is wide geographic variability in the frequency of gallbladder carcinoma,which can only be explained by an interaction between genetic factors and their alteration. Gallstones and chronic cholecystitis are important risk factors in the formation of gallbladder malignancies. Factors such as chronic bacterial infection,primary sclerosing cholangitis,an anomalous junction of the pancreaticobiliary duct,and several types of gallbladder polyps are associated with a higher risk of gallbladder cancer. There is also an interesting correlation between risk factors and the histological type of cancer. However,despite theoretical risk factors,only a third of gallbladder carcinomas are recognized preoperatively. In most patients,the tumor is diagnosed by the pathologist after a routine cholecystectomy for a benign disease and is termed ‘‘incidental or occult gallbladder carcinoma''(IGBC). A cholecystectomy is performed frequently due to the minimal invasiveness of the laparoscopic technique. Therefore,the postoperative diagnosis of potentially curable early-stage disease is more frequent. A second radical re-resection to complete a radical cholecystectomy is required for several IGBCs. However,the literature and guidelines used in different countries differ regarding the radicality or T-stage criteria for performing a radical cholecystectomy. The NCCN guidelines and data from the German registry(GR),which records the largest number of incidental gallbladder carcinomas in Europe,indicate that carcinomas infiltrating the muscularis propria or beyond require radical surgery. According to GR data and current literature,a wedge resection with a combined dissection of the lymph nodes of the hepatoduodenal ligament is adequate for T1 b and T2 carcinomas. The reason for a radical cholecystectomy after simple CE in a formally R0 situation is either occult invasion or hepatic spread with unknown lymphogenic dissemination. Unfortunately,there are diverse interpretations and practices regarding stageadjusted therapy for gallbladder carcinoma. The current data suggest that more radical therapy is warranted. 展开更多
关键词 GALLBLADDER CARCINOMA Stage-adjusted THERAPY Radic
下载PDF
Ionizable drug delivery systems for efficient and selective gene therapy 被引量:2
5
作者 Yu-Qi Zhang Ran-Ran Guo +10 位作者 Yong-Hu Chen Tian-Cheng Li Wen-Zhen Du Rong-Wu Xiang Ji-Bin Guan Yu-Peng Li Yuan-Yu Huang Zhi-Qiang Yu Yin Cai Peng Zhang Gui-Xia Ling 《Military Medical Research》 SCIE CAS CSCD 2023年第6期818-847,共30页
Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function.However,a great challenge in bringing the nucleic acid formulations to the market is the safe and effective deli... Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function.However,a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells.To be excited,the development of ionizable drug delivery systems(IDDSs)has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019(COVID-19)in 2021.Compared with conventional cationic gene vectors,IDDSs can decrease the toxicity of carriers to cell membranes,and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures.Despite the progress,there remain necessary requirements for designing more efficient IDDSs for precise gene therapy.Herein,we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms.The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of plasmid DNA(pDNA)and four kinds of RNA.In particular,organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity.We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future,and indicate ideas for developing next generation gene vectors. 展开更多
关键词 Ionizable nanomaterials Ionizable drug delivery systems(IDDSs) Nucleic acids Gene therapy
下载PDF
Triterpenoids-templated self-assembly nanosystem for biomimetic delivery of CRISPR/Cas9 based on the synergy of TLR-2 and ICB to enhance HCC immunotherapy
6
作者 Bing-Chen Zhang Chun-Mei Lai +1 位作者 Bang-Yue Luo Jing-Wei Shao 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第7期3205-3217,共13页
Combination immunotherapy has shown promising potential for enhancing the objective response rate compared to immune checkpoint blockade(ICB)monotherapy.However,combination therapy with multi-drugs is limited by the d... Combination immunotherapy has shown promising potential for enhancing the objective response rate compared to immune checkpoint blockade(ICB)monotherapy.However,combination therapy with multi-drugs is limited by the different properties of the agents and inconsistent synergistic targeted delivery.Herein,based on a universal triterpene template and the anticancer active agent ursolic acid(UA),a cytomembrane-coated biomimetic delivery nanoplatform(UR@M)prepared by the selfassembly of a PD-L1 targeted CRISPR/Cas9 system and UA was designed for hepatocellular carcinoma(HCC)treatment.UR@M showed enhanced tumor accumulation in vivo with homologous tumor targeting,and CRISPR in the nanosystem exhibited potent gene-editing efficiency of 76.53% in vitro and 62.42% in vivo with no off-target effects.UA activated the natural immune system through the TLR-2-MyD88-TRAF6 pathway,which synergistically enhanced the proliferation of natural killer cells and dendritic cells and realized excellent immune cytotoxic T cell infiltration by combining with the ICB of PD-L1.The strategy of work along both lines based on innate immune and adaptive immunity displayed a significant effect in tumor regression.Overall,the UA-templated strategy“killed three birds with one stone”by establishing a self-assembly nanosystem,inducing tumor cell death,and promoting synergistic immunostimulation for HCC treatment. 展开更多
关键词 Ursolic acid SELF-ASSEMBLY Biomimetic nanoplatform Hepatocellular carcinoma CRISPR/Cas9 Immune checkpoint blockade Gene therapy IMMUNOTHERAPY
原文传递
An immunotherapeutic hydrogel booster inhibits tumor recurrence and promotes wound healing for postoperative management of melanoma
7
作者 Yuanyuan Yang Bo Zhang +6 位作者 Yangtao Xu Wenxiang Zhu Zinian Zhu Xibo Zhang Wenze Wu Jierong Chen Zhiqiang Yu 《Bioactive Materials》 SCIE CSCD 2024年第12期178-193,共16页
Low tumor immunogenicity,immunosuppressive tumor microenvironment,and bacterial infections have emerged as significant challenges in postsurgical immunotherapy and skin regeneration for preventing melanoma recurrence.... Low tumor immunogenicity,immunosuppressive tumor microenvironment,and bacterial infections have emerged as significant challenges in postsurgical immunotherapy and skin regeneration for preventing melanoma recurrence.Herein,an immunotherapeutic hydrogel booster(GelMA-CJCNPs)was developed to prevent postoperative tumor recurrence and promote wound healing by incorporating ternary carrier-free nanoparticles(CJCNPs)containing chlorine e6(Ce6),a BRD4 inhibitor(JQ1),and a glutaminase inhibitor(C968)into methacrylic anhydride-modified gelatin(GelMA)dressings.GelMA-CJCNPs reduced glutathione production by inhibiting glutamine metabolism,thereby preventing the destruction of reactive oxygen species generated by photodynamic therapy,which could amplify oxidative stress to induce severe cell death and enhance immunogenic cell death.In addition,GelMA-CJCNPs reduced M2-type tumor-associated macrophage polarization by blocking glutamine metabolism to reverse the immunosuppressive tumor microenvironment,recruiting more tumor-infiltrating T lymphocytes.GelMA-CJCNPs also downregulated IFN-γ-induced expression of programmed cell death ligand 1 to mitigate acquired immune resistance.Benefiting from the amplified systemic antitumor immunity,GelMA-CJCNPs markedly inhibited the growth of both primary and distant tumors.Moreover,GelMA-CJCNPs demonstrated satisfactory photodynamic antibacterial effects against Staphylococcus aureus infections,thereby promoting postsurgical wound healing.Hence,this immunotherapeutic hydrogel booster,as a facile and effective postoperative adjuvant,possesses a promising potential for inhibiting tumor recurrence and accelerating skin regeneration. 展开更多
关键词 Glutamine metabolism IMMUNOTHERAPY HYDROGEL MELANOMA Wound healing
原文传递
Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma 被引量:1
8
作者 Zhiyu Yu Xiang Luo +8 位作者 Cheng Zhang Xin Lu Xiaohui Li Pan Liao Zhongqiu Liu Rong Zhang Shengtao Wang Zhiqiang Yu Guochao Liao 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期329-333,共5页
Hepatocellular carcinoma is a common and fatal malignancy for which there is no effective systemic therapeutic strategy.Dihydroartemisinin(DHA),a derivative of artemisinin,has been shown to exert anti-tumor effects th... Hepatocellular carcinoma is a common and fatal malignancy for which there is no effective systemic therapeutic strategy.Dihydroartemisinin(DHA),a derivative of artemisinin,has been shown to exert anti-tumor effects through the production of reactive oxygen species(ROS)and resultant mitochondrial damage.However,clinical translation is limited by several drawbacks,such as insolubility,instability and low bioavailability.Here,based on a nanomedicine-based delivery strategy,we fabricated mitochondria-targeted carrier-free nanoparticles coupling DHA and triphenylphosphonium(TPP),aiming to improve bioavailability and mitochondrial targeting.DHA-TPP nanoparticles can be passively delivered to the tumor site by enhanced penetration and retention and then internalized.Flow cytometry and Western blot analysis showed that DHA-TPP nanoparticles increased intracellular ROS,which increased mitochondrial stress and in turn upregulated the downstream Bcl-2 pathway,leading to apoptosis.In vivo experiments showed that DHA-TPP nanoparticles exhibited anti-tumor effects in a mouse model of hepatocellular carcinoma.These findings suggest carrier-free DHA-TPP nanoparticles as a potential therapeutic strategy for hepatocellular carcinoma. 展开更多
关键词 Hepatocellular carcinoma Carrier-freenanoparticles DIHYDROARTEMISININ Mitochondria targeting Apoptosis
原文传递
Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment
9
作者 Peide Zhu Yangjia Liu +8 位作者 Yaoyao Tang Siqi Zhu Xinyang Liu Lei Yin Quan Liu Zhiqiang Yu Quan Xu Dixian Luo Juncheng Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期414-419,共6页
Liposomes are one of the significant classes of antitumor nanomaterials and the most successful nanomedicine drugs in clinical translation. However, it is difficult to accurately reveal liposome delivery modes and dru... Liposomes are one of the significant classes of antitumor nanomaterials and the most successful nanomedicine drugs in clinical translation. However, it is difficult to accurately reveal liposome delivery modes and drug release rates at different p H values to assess the biodistribution and drug delivery pathways in vivo. Here, we established a strategy to integrate Bi-doped carbon quantum dots(CQDs)with liposomes to produce fluorescence visualization and therapeutic effects, namely lipo/Bi-doped CQDs.Lipo/Bi-doped CQDs show good water solubility and physicochemical properties, which can be used for in vitro labeling of colon cancer(CT26) cells and in vivo imaging localization tracking tumors for monitoring. Simultaneously, thanks to the excellent p H sensitivity and ion doping characteristic of Bi-doped CQDs, lipo/Bi-doped CQDs can be used to reveal the drug release rate of liposomes at different p H values and exhibit potential effects in vivo antitumor therapy. 展开更多
关键词 Bi-doped CQDs Lipo/Bi-doped CQDs pH sensitivity In vitro/in vivo imaging Diagnosis and treatment integration
原文传递
Self-oxygenated co-assembled biomimetic nanoplatform for enhanced photodynamic therapy in hypoxic tumor
10
作者 Bingchen Zhang Ling Lin +7 位作者 Jizong Mao Weisheng Mo Zibo Li Shengtao Wang Yan Tang Chunhui Cui Yifen Wu Zhiqiang Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第10期174-179,共6页
Photodynamic therapy(PDT)has shown great application potential in cancer treatment and the important manifestation of PDT in the inhibition of tumors is the activation of immunogenic cell death(ICD)effects.However,the... Photodynamic therapy(PDT)has shown great application potential in cancer treatment and the important manifestation of PDT in the inhibition of tumors is the activation of immunogenic cell death(ICD)effects.However,the strategy is limited in the innate hypoxic tumor microenvironment.There are two key elements for the realization of enhanced PDT:specific cellular uptake and release of the photosensitizer in the tumor,and a sufficient amount of oxygen to ensure photodynamic efficiency.Herein,self-oxygenated biomimetic nanoparticles(CS@M NPs)co-assembled by photosensitizer prodrug(Ce6-S-S-LA)and squalene(SQ)were engineered.In the treatment of triple negative breast cancer(TNBC),the oxygen carried by SQ can be converted to reactive oxygen species(ROS).Meanwhile,glutathione(GSH)consumption during transformation from Ce6-S-S-LA to chlorin e6(Ce6)avoided the depletion of ROS.The co-assembled(CS NPs)were encapsulated by homologous tumor cell membrane to improve the tumor targeting.The results showed that the ICD effect of CS@M NPs was confirmed by the significant release of calreticulin(CRT)and high mobility group protein B1(HMGB1),and it significantly activated the immune system by inhibiting the hypoxia inducible factor-1alpha(HIF-1α)-CD39-CD73-adenosine a2a receptor(A2AR)pathway,which not only promoted the maturation of dendritic cells(DC)and the presentation of tumor specific antigens,but also induced effective immune infiltration of tumors.Overall,the integrated nanoplatform implements the concept of multiple advantages of tumor targeting,reactive drug release,and synergistic photodynamic therapy-immunotherapy,which can achieve nearly 90%tumor suppression rate in orthotopic TNBC models. 展开更多
关键词 Photodynamic therapy Biomimetic nanoplatform Self-oxygenated co-assembly nanoparticles Immunogenic cell death HIF-1α-CD39-CD73-A2AR pathway
原文传递
β-Cyclodextrin derived full-spectrum fluorescent carbon dots: The formation process investigation and biological applications
11
作者 Peide Zhu Wenjing Li +11 位作者 Yuqi Zhang Qiang Sun Yi Lin Ailin Qiu Xinyi Chen Yujin Zhou Guangfu Wu Yifan Li Zhiqiang Yu Quan Xu Dixian Luo Lulu Cai 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第10期215-222,共8页
Carbon dots(CDs), a new building unit, have been revolutionizing the fields of biomedicine, bioimaging, and optoelectronics with their excellent physical, chemical, and biological properties. However, the difficulty o... Carbon dots(CDs), a new building unit, have been revolutionizing the fields of biomedicine, bioimaging, and optoelectronics with their excellent physical, chemical, and biological properties. However, the difficulty of preparing excitation-dependent full-spectrum fluorescent CDs has seriously hindered their further research in fluorescence emission mechanisms and biomedicine. Here, we report full-spectrum fluorescent CDs that exhibit controlled emission changes from purple(380 nm) to red(613 nm) at room temperature by changing the excitation wavelength, and the excitation dependence was closely related to the regulation of sp2 and sp3 hybrid carbon structures by β-cyclodextrin-related groups. In addition,by regulating the content of β-cyclodextrin, the optimal quantum yields of full-spectrum fluorescent CDs were 8.97%, 8.35%, 7.90%, 9.69% and 17.4% at the excitation wavelengths of 340, 350, 390, 410 and 540 nm,respectively. Due to their excellent biocompatibility and color tunability, full-spectrum fluorescent CDs emitted bright and steady purple, blue, green, yellow, and red fluorescence in MCF-7 cells. Moreover, we optimized the imaging conditions of CDs and mitochondrial-specific dyes;and realized the mitochondrialtargeted co-localization imaging of purple, blue and green fluorescence. After that, we also explored the effect of full-spectrum fluorescent CDs in vivo fluorescence imaging through the intratumorally, subcutaneously, and caudal vein, and found that full-spectrum fluorescent CDs had good fluorescence imaging ability in vivo. 展开更多
关键词 Carbon dots Multi-emission Fluorescence mechanism Mitochondrial targeting Color tenability Fluorescence imaging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部