期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
Genetically modified pigs:Emerging animal models for hereditary hearing loss 被引量:1
1
作者 Xiao Wang Tian-Xia Liu +7 位作者 Ying Zhang Liang-Wei Xu Shuo-Long Yuan A-Long Cui Wei-Wei Guo Yan-Fang Wang Shi-Ming Yang Jian-Guo Zhao 《Zoological Research》 SCIE CSCD 2024年第2期284-291,共8页
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e... Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models. 展开更多
关键词 PIGS Animal models Hereditary hearing loss Genetic modification Inner ear
下载PDF
Ionically Imprinting-Based Copper(Ⅱ)Label-Free Detection for Preventing Hearing Loss
2
作者 Huan Wang Hui Zhang +3 位作者 Xiaoli Zhang Hong Chen Ling Lu Renjie Chai 《Engineering》 SCIE EI CAS CSCD 2024年第2期276-282,共7页
Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,t... Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss. 展开更多
关键词 Structural color Microfluidics Ionic imprinting Label-free detection Hearing loss
下载PDF
Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear
3
作者 Jieyu Qi Wenjuan Huang +7 位作者 Yicheng Lu Xuehan Yang Yinyi Zhou Tian Chen Xiaohan Wang Yafeng Yu Jia-Qiang Sun Renjie Chai 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第1期113-126,共14页
Hearing loss has become increasingly prevalent and causes considerable disability,thus gravely burdening the global economy.Irreversible loss of hair cells is a main cause of sensorineural hearing loss,and currently,t... Hearing loss has become increasingly prevalent and causes considerable disability,thus gravely burdening the global economy.Irreversible loss of hair cells is a main cause of sensorineural hearing loss,and currently,the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids,but these are of limited benefit in patients.It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies.At present,how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research.Multi-ple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells,and in this article,we first review the principal mechanisms underlying hair cell reproduction.We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration,and we summarize current achievements in hair cell regeneration.Lastly,we discuss potential future approaches,such as small molecule drugs and gene therapy,which might be applied for regenerating functional hair cells in the clinic. 展开更多
关键词 Hearing loss Cochlea-Stem cell Hair cell regeneration
原文传递
Derivation and applications of human hepatocyte-like cells 被引量:2
4
作者 Shuang Li Shi-Qian Huang +3 位作者 Yong-Xu Zhao Yu-Jie Ding Dan-Jun Ma Qiu-Rong Ding 《World Journal of Stem Cells》 SCIE 2019年第8期535-547,共13页
Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. Wi... Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. With over 10 years’ efforts in this field, great achievements have been made. HLCs have been successfully derived and applied in disease modeling, toxicity testing and drug discovery. Large cohorts of induced pluripotent stem cells-derived HLCs have been recently applied in studying population genetics and functional outputs of common genetic variants in vitro. This has offered a new paradigm for genomewide association studies and possibly in vitro pharmacogenomics in the nearly future. However, HLCs have not yet been successfully applied in bioartificial liver devices and have only displayed limited success in cell transplantation. HLCs still have an immature hepatocyte phenotype and exist as a population with great heterogeneity, and HLCs derived from different hPSC lines display variable differentiation efficiency. Therefore, continuous improvement to the quality of HLCs, deeper investigation of relevant biological processes, and proper adaptation of recent advances in cell culture platforms, genome editing technology, and bioengineering systems are required before HLCs can fulfill the needs in basic and translational research. In this review, we summarize the discoveries, achievements, and challenges in the derivation and applications of HLCs. 展开更多
关键词 Hepatocyte-like CELLS HUMAN PLURIPOTENT stem CELLS HEPATIC differentiation Biomedical application
下载PDF
Conductive PS inverse opals for regulating proliferation and differentiation of neural stem cells 被引量:1
5
作者 Yangnan Hu Han Zhang +11 位作者 Hao Wei Menghui Liao Xiaoyan Chen Jiayue Xing Lian Duan Cuntu Cheng Weicheng Lu Xuechun Yang Peina Wu Huan Wang Jingdun Xie Renjie Chai 《Engineered Regeneration》 2023年第2期214-221,共8页
The development of neural tissue engineering has brought new hope to the treatment of spinal cord injury(SCI).Up to date,various scaffolds have been developed to induce the oriented growth and arrangement of nerves to... The development of neural tissue engineering has brought new hope to the treatment of spinal cord injury(SCI).Up to date,various scaffolds have been developed to induce the oriented growth and arrangement of nerves to facilitate the repair after injury.In this work,a conductive and anisotropic inverse opal substrate was presented by modifying polystyrene(PS)inverse opal films with carbon nanotubes and then stretching them to varying degrees.The film had good biocompatibility,and neural stem cells(NSCs)grown on the film displayed good orientation along the stretching direction.In addition,benefiting from the conductivity and anisotropy of the film,NSCs differentiated into neurons significantly.These results suggest that the conductive and anisotropic PS inverse opal substrates possess value in nerve tissue engineering regeneration. 展开更多
关键词 Nerve regeneration Inverse opal Neural stem cells Oriented growth Tissue engineering
原文传递
Immunity-and-matrix-regulatory cells enhance cartilage regeneration for meniscus injuries: a phase I dose-escalation trial
6
作者 Liangjiang Huang Song Zhang +28 位作者 Jun Wu Baojie Guo Tingting Gao Sayed Zulfiqar Ali Shah Bo Huang Yajie Li Bo Zhu Jiaqi Fan Liu Wang Yani Xiao Wenjing Liu Yao Tian Zhengyu Fang Yingying Lv Lingfeng Xie Sheng Yao Gaotan Ke Xiaolin Huang Ying Huang Yujuan Li Yi Jia Zhongwen Li Guihai Feng Yan Huo Wei Li Qi Zhou Jie Hao Baoyang Hu Hong Chen 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2023年第12期5873-5886,共14页
Immunity-and-matrix-regulatory cells(IMRCs)derived from human embryonic stem cells have unique abilities in modulating immunity and regulating the extracellular matrix,which could be mass-produced with stable biologic... Immunity-and-matrix-regulatory cells(IMRCs)derived from human embryonic stem cells have unique abilities in modulating immunity and regulating the extracellular matrix,which could be mass-produced with stable biological properties.Despite resemblance to mesenchymal stem cells(MSCs)in terms of self-renew and tri-lineage differentiation,the ability of IMRCs to repair the meniscus and the underlying mechanism remains undetermined.Here,we showed that IMRCs demonstrated stronger immunomodulatory and pro-regenerative potential than umbilical cord MSCs when stimulated by synovial fluid from patients with meniscus injury.Following injection into the knees of rabbits with meniscal injury,IMRCs enhanced endogenous fibrocartilage regeneration.In the dose-escalating phase I clinical trial(NCT03839238)with eighteen patients recruited,we found that intra-articular IMRCs injection in patients was safe over 12 months post-grafting.Furthermore,the effective results of magnetic resonance imaging(MRI)of meniscus repair and knee functional scores suggested that 5×107 cells are optimal for meniscus injury treatment.In summary,we present the first report of a phase I clinical trial using IMRCs to treat meniscus injury.Our results demonstrated that intra-articular injection of IMRCs is a safe and effective therapy by providing a permissive niche for cartilage regeneration. 展开更多
关键词 MENISCUS INJURIES CARTILAGE
原文传递
Genome-edited rabbits:Unleashing the potential of a promising experimental animal model across diverse diseases 被引量:1
7
作者 Yang Han Jiale Zhou +3 位作者 Renquan Zhang Yuru Liang Liangxue Lai Zhanjun Li 《Zoological Research》 SCIE CSCD 2024年第2期253-262,共10页
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie... Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine. 展开更多
关键词 Genome editing Animal model RABBIT CRISPR/Cas9 Genetic diseases
下载PDF
Programmable synthetic receptors:the next-generation of cell and gene therapies
8
作者 Fei Teng Tongtong Cui +3 位作者 Li Zhou Qingqin Gao Qi Zhou Wei Li 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2024年第2期376-400,共25页
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases.However,concerns over the safety and efficacy require to be further addressed in order to realize their full potentia... Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases.However,concerns over the safety and efficacy require to be further addressed in order to realize their full potential.Synthetic receptors,a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules,have been rapidly developed and applied as a powerful solution.Delicately designed and engineered,they can be applied to finetune the therapeutic activities,i.e.,to regulate production of dosed,bioactive payloads by sensing and processing user-defined signals or biomarkers.This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research.With a special focus on four synthetic receptor systems at the forefront,including chimeric antigen receptors(CARs)and synthetic Notch(synNotch)receptors,we address the generalized strategies to design,construct and improve synthetic receptors.Meanwhile,we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation. 展开更多
关键词 synthetic landscape PAYLOAD
原文传递
CRL2^(APPBP2)-mediated TSPYL2 degradation counteracts human mesenchymal stem cell senescence
9
作者 Daoyuan Huang Qian Zhao +12 位作者 Kuan Yang Jinghui Lei Ying Jing Hongyu Li Chen Zhang Shuai Ma Shuhui Sun Yusheng Cai Guibin Wang Jing Qu Weiqi Zhang Si Wang Guang-Hui Liu 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第3期460-474,共15页
Cullin-RING E3 ubiquitin ligases(CRLs),the largest family of multi-subunit E3 ubiquitin ligases in eukaryotic cells,represent core cellular machinery for executing protein degradation and maintaining proteostasis.Here... Cullin-RING E3 ubiquitin ligases(CRLs),the largest family of multi-subunit E3 ubiquitin ligases in eukaryotic cells,represent core cellular machinery for executing protein degradation and maintaining proteostasis.Here,we asked what roles Cullin proteins play in human mesenchymal stem cell(hMSC)homeostasis and senescence.To this end,we conducted a comparative aging phenotype analysis by individually knocking down Cullin members in three senescence models:replicative senescent hMSCs,Hutchinson-Gilford Progeria Syndrome hMSCs,and Werner syndrome hMSCs.Among all family members,we found that CUL2 deficiency rendered hMSCs the most susceptible to senescence.To investigate CUL2-specific underlying mechanisms,we then applied CRISPR/Cas9-mediated gene editing technology to generate CUL2-deficient human embryonic stem cells(hESCs).When we differentiated these into h MSCs,we found that CUL2 deletion markedly accelerates hMSC senescence.Importantly,we identified that CUL2 targets and promotes ubiquitin proteasome-mediated degradation of TSPYL2(a known negative regulator of proliferation)through the substrate receptor protein APPBP2,which in turn downregulates one of the canonical aging marker-P21^(waf1/cip1),and thereby delays senescence.Our work provides important insights into how CRL2^(APPBP2)-mediated TSPYL2 degradation counteracts hMSC senescence,providing a molecular basis for directing intervention strategies against aging and aging-related diseases. 展开更多
关键词 Cullins stem cell SENESCENCE AGING PROTEOSTASIS UBIQUITINATION APPBP2 TSPYL2
原文传递
Dual human iPSC-derived cardiac lineage cell-seeding extracellular matrix patches promote regeneration and long-term repair of infarcted hearts 被引量:2
10
作者 Yun Jiang Ling-Ling Zhang +10 位作者 Fan Zhang Wei Bi Peng Zhang Xiu-Jian Yu Sen-Le Rao Shi-Hui Wang Qiang Li Chen Ding Ying Jin Zhong-Min Liu Huang-Tian Yang 《Bioactive Materials》 SCIE CSCD 2023年第10期206-226,共21页
Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts;however, their efficacy needs to be enhanced. Here we tested th... Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts;however, their efficacy needs to be enhanced. Here we tested the hypotheses that the combination of decellularized porcine small intestinal submucosal extracellular matrix (SIS-ECM) with hCVPCs, hCMs, or dual of them (Mix, 1:1) could provide better therapeutic effects than the SIS alone, and dual hCVPCs with hCMs would exert synergic effects in cardiac repair. The data showed that the SIS patch well supported the growth of hCVPCs and hCMs. Epicardially implanted SIS-hCVPC, SIS-hCM, or SIS-Mix patches at 7-day post-myocardial infarction significantly ameliorated functional worsening, ventricular dilation and scar formation at 28- and 90-day post-implantation in C57/B6 mice, whereas the SIS only mildly improved function at 90-day post-implantation. Moreover, the SIS and SIS-cell patches improved vascularization and suppressed MI-induced cardiomyocyte hypertrophy and expression of Col1 and Col3, but only the SIS-hCM and the SIS-Mix patches increased the ratio of collagen III/I fibers in the infarcted hearts. Further, the SIS-cell patches stimulated cardiomyocyte proliferation via paracrine action. Notably, the SIS-Mix had better improvements in cardiac function and structure, engraftments, and cardiomyocyte proliferation. Proteomic analysis showed distinct biological functions of exclusive proteins secreted from hCVPCs and hCMs, and more exclusive proteins secreted from co-cultivated hCVPCs and hCMs than mono-cells involving in various functional processes essential for infarct repair. These findings are the first to demonstrate the efficacy and mechanisms of mono- and dual-hCVPC- and hCM-seeding SIS-ECM for repair of infarcted hearts based on the side-by-side comparison. 展开更多
关键词 Induced human pluripotent stem cells Cardiac lineage cells Extracellular matrix patch Cardiomyocyte regeneration Infarcted heart repair
原文传递
Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner
11
作者 Jinghui Lei Xiaoyu Jiang +11 位作者 Daoyuan Huang Ying Jing Shanshan Yang Lingling Geng Yupeng Yan Fangshuo Zheng Fang Cheng Weiqi Zhang Juan Carlos Izpisua Belmonte Guang-Hui Liu Si Wang Jing Qu 《Protein & Cell》 SCIE CSCD 2024年第1期36-51,共16页
Hypoxia-inducible factor(HIF-1α),a core transcription factor responding to changes in cellular oxygen levels,is closely associated with a wide range of physiological and pathological conditions.However,its differenti... Hypoxia-inducible factor(HIF-1α),a core transcription factor responding to changes in cellular oxygen levels,is closely associated with a wide range of physiological and pathological conditions.However,its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive.Here,we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-ia-deficient human vascular cells including vascular endothelial cells,vascular smooth muscle cells,and mesenchymal stem cells(MsCs),as a platform for discovering cell type-specific hypox-ia-induced response mechanisms.Through comparative molecular profiling across cell types under normoxic and hypoxic conditions,we provide insight into the indispensable role of HIF-1αin the promotion of ischemic vascular regeneration.We found human MSCs to be the vascular cell type most susceptible to HIF-1a deficiency,and that transcriptional inactivation of ANKZF1,an effector of HIF-1a,impaired pro-angiogenic processes.Altogether,our findings deepen the understanding of HIF-ia in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage. 展开更多
关键词 HIF-1 human ESC vascular cell REGENERATION
原文传递
Dock4 is required for the maintenance of cochlear hair cells and hearing function
12
作者 Guodong Hong Xiaolong Fu +12 位作者 Jieyu Qi Buwei Shao Xuan Han Yuan Fang Shuang Liu Cheng Cheng Chengwen Zhu Junyan Gao Xia Gao Jie Chen Ming Xia Wei Xiong Renjie Chai 《Fundamental Research》 CAS CSCD 2023年第4期557-569,共13页
Auditory hair cells(HCs)are the mechanosensory receptors of the cochlea,and HC loss or malfunction can result from genetic defects.Dock4,a member of the Dock180-related protein superfamily,is a guanine nucleotide exch... Auditory hair cells(HCs)are the mechanosensory receptors of the cochlea,and HC loss or malfunction can result from genetic defects.Dock4,a member of the Dock180-related protein superfamily,is a guanine nucleotide exchange factor for Rac1,and previous reports have shown that Dock4 mutations are associated with autism spectrum disorder,myelodysplastic syndromes,and tumorigenesis.Here,we found that Dock4 is highly expressed in the cochlear HCs of mice.However,the role of Dock4 in the inner ear has not yet been investigated.Taking advantage of the piggyBac transposon system,Dock4 knockdown(KD)mice were established to explore the role of Dock4 in the cochlea.Compared to wild-type controls,Dock4 KD mice showed significant hearing impairment from postnatal day 60.Dock4 KD mice showed hair bundle deficits and increased oxidative stress,which eventually led to HC apoptosis,late-onset HC loss,and progressive hearing loss.Furthermore,molecular mechanism studies showed that Rac1/β-catenin signaling was significantly downregulated in Dock4 KD cochleae and that this was the cause for the disorganized stereocilia and increased oxidative stress in HCs.Overall,our work demonstrates that the Dock4/Rac1/β-catenin signaling pathway plays a critical role in the maintenance of auditory HCs and hearing function. 展开更多
关键词 Hair cell STEREOCILIA Oxidative stress APOPTOSIS Hearing loss Dock4
原文传递
An optimized prime editing system for efficient modification of the pig genome 被引量:1
13
作者 Yanan Qi Ying Zhang +5 位作者 Shuangjie Tian Ruojun Zong Xinghui Yan Yu Wang Yanfang Wang Jianguo Zhao 《Science China(Life Sciences)》 SCIE CAS CSCD 2023年第12期2851-2861,共11页
Prime editing(PE)is a recent gene editing technology that can mediate insertions or deletions and all twelve types of base-tobase conversions.However,its low efficiency hampers the application in creating novel breeds... Prime editing(PE)is a recent gene editing technology that can mediate insertions or deletions and all twelve types of base-tobase conversions.However,its low efficiency hampers the application in creating novel breeds and biomedical models,especially in pigs and other important farm animals.Here,we demonstrate that the pig genome is editable using the PE system,but the editing efficiency was quite low as expected.Therefore,we aimed to enhance PE efficiency by modulating both exogenous PE tools and endogenous pathways in porcine embryonic fibroblasts(PEFs).First,we modified the peg RNA by extending the duplex length and mutating the fourth thymine in a continuous sequence of thymine bases to cytosine,which significantly enhanced PE efficiency by improving the expression of peg RNA and targeted cleavage.Then,we targeted SAMHD1,a deoxynucleoside triphosphate triphosphohydrolase(d NTPase)that impedes the reverse transcription process in retroviruses,and found that treatment with its inhibitor,cephalosporin C zinc salt(CPC),increased PE efficiency up to 29-fold(4-fold on average),presumably by improving the reverse transcription process of Moloney murine leukemia virus reverse transcriptase(M-MLV RT)in the PE system.Moreover,PE efficiency was obviously improved by treatment with a panel of histone deacetylase inhibitors(HDACis).Among the four HDACis tested,panobinostat was the most efficient,with an efficiency up to 122-fold(7-fold on average),partly due to the considerable HDACi-mediated increase in transgene expression.In addition,the synergistic use of the three strategies further enhanced PE efficiency in PEFs.Our study provides novel approaches for optimization of the PE system and broadens the application scope of PE in agriculture and biomedicine. 展开更多
关键词 prime editing PIG porcine embryonic fibroblasts editing efficiency
原文传递
4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis 被引量:2
14
作者 Yifang He Qianzhao Ji +10 位作者 Zeming Wu Yusheng Cai Jian Yin Yiyuan Zhang Sheng Zhang Xiaoqian Liu Weiqi zhang Guang-Hui Liu Si Wang Moshi Song Jing Qu 《Protein & Cell》 SCIE CSCD 2023年第3期202-216,共15页
Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders,the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown.Here,we report that the expression of ... Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders,the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown.Here,we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem celis(hMSCs).Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration,increases mitochondrial reactive oxygen species(Ros)production,and accelerates cellular senescence.Mechanistically,the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes,especially several key subunits of complex III including UQCRC2.Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs.These findings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis,particularly for the mitochondrial respiration complex Il,thus providing a new potential target to counteract human stem cell senescence. 展开更多
关键词 4E-BP1 MITOCHONDRIA AGING
原文传递
Telomere-dependent and telomereindependent roles of RAP1 in regulating human stem cell homeostasis 被引量:7
15
作者 Xing Zhang Zunpeng Liu +14 位作者 Xiaoqian Liu Si Wang Yiyuan Zhang Xiaojuan He Shuhui Sun Shuai Ma Ng Shyh-Chang Feng Liu Qiang Wang Xiaoqun Wang Lin Liu Weiqi Zhang Moshi Song Guang-Hui Liu Jing Qu 《Protein & Cell》 SCIE CAS CSCD 2019年第9期649-667,共19页
RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclea匚 Here we generated RAP1 -deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtai... RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclea匚 Here we generated RAP1 -deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via directed differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 deficiency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells.Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis. 展开更多
关键词 RAP1 stem cell TELOMERE RELN METHYLATION
原文传递
Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a
16
作者 Yifang Chen Chenxu Zhao +6 位作者 Han Guo Weilong Zou Zhaoqi Zhang Dong Wei Hezhe Lu Lianfeng Zhang Yong Zhao 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2023年第8期941-954,共14页
Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection;however, the molecular regulation of NET formation remains poorly understood. In the current study,... Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection;however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28–90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections. 展开更多
关键词 Wild-type p53-induced phosphatase 1(Wip1) Coro1a Calcium pathway NEUTROPHILS Neutrophil extracellular trap(NET) ABSCESS
原文传递
Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies
17
作者 Ran Wang Guangdun Peng +1 位作者 Patrick P.L.Tam Naihe Jing 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2023年第1期13-23,共11页
Recent advances of single-cell transcriptomics technologies and allied computational methodologies have revolutionized molecular cell biology.Meanwhile,pioneering explorations in spatial transcriptomics have opened up... Recent advances of single-cell transcriptomics technologies and allied computational methodologies have revolutionized molecular cell biology.Meanwhile,pioneering explorations in spatial transcriptomics have opened up avenues to address fundamental biological questions in health and diseases.Here,we review the technical attributes of single-cell RNA sequencing and spatial transcriptomics,and the core concepts of computational data analysis.We further highlight the challenges in the application of data integration methodologies and the interpretation of the biological context of the findings. 展开更多
关键词 scRNA-seq Computational methodology Spatial transcriptome Data integration Mathematical model
原文传递
Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration
18
作者 Qian Zhao Yandong Zheng +11 位作者 Dongxin Zhao Liyun Zhao Lingling Geng Shuai Ma Yusheng Cai Chengyu Liu Yupeng Yan Juan Carlos Izpisua Belmonte Si Wang Weiqi Zhang Guang-Hui Liu Jing Qu 《Protein & Cell》 SCIE CSCD 2023年第6期398-415,共18页
Hair loss affects millions of people at some time in their life,and safe and efficient treatments for hair loss are a significant unmet medical need.We report that topical delivery of quercetin(Que)stimulates resting ... Hair loss affects millions of people at some time in their life,and safe and efficient treatments for hair loss are a significant unmet medical need.We report that topical delivery of quercetin(Que)stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice.We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1αin endothelial cells.Skin administration of a HIF-1αagonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que.Together,these findings provide a molecular understanding for the efficacy of Que in hair regrowth,which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine,and suggest a route of pharmacological intervention that may promote hair regrowth. 展开更多
关键词 single-cell RNA-sequencing QUE hair follicle regeneration endothelial cells HIF-1α
原文传递
肝胆肿瘤中肿瘤特异性CircRNA衍生抗原肽的鉴定
19
作者 Wenwen Wang Lili Ma +14 位作者 Zheng Xing Tinggan Yuan Jinxia Bao Yanjing Zhu Xiaofang Zhao Yan Zhao Yali Zong Yani Zhang Siyun Shen Xinyao Qiu Shuai Yang 王红阳 高栋 王鹏 陈磊 《Engineering》 SCIE EI CAS CSCD 2023年第3期159-170,共12页
基于肿瘤抗原的免疫治疗的应用受到验证免疫原性肽稀缺性的阻碍。本研究旨在研究环状RNA(circRNA)在肝胆肿瘤类器官中作为肿瘤抗原肽新来源的潜力。使用RNA测序(RNA-seq)和基于算法的评分工具,预测3950个翻译的肿瘤特异性环状RNA在27个... 基于肿瘤抗原的免疫治疗的应用受到验证免疫原性肽稀缺性的阻碍。本研究旨在研究环状RNA(circRNA)在肝胆肿瘤类器官中作为肿瘤抗原肽新来源的潜力。使用RNA测序(RNA-seq)和基于算法的评分工具,预测3950个翻译的肿瘤特异性环状RNA在27个类器官中产生18971个抗原肽。从抗原格局来看,11个氨基酸长度(mer)肽和人白细胞抗原(HLA)-A结合肽具有最高的免疫原性相关评分。在分析的3/5类器官中,有13个预测抗原肽通过质谱(MS)免疫肽组学被直接确认为HLA-A、HLA-B和HLA-C(HLA-ABC)结合肽。在流式细胞术和酶联免疫吸附试验(ELISA)中,由HLA-ABC分子呈递的circRNA衍生的肿瘤特异性肽刺激CD8(CD8)T细胞,显示CD107a干扰素γ(IFNγ)共表达和IFNγ分泌增加。免疫原性环状RNA衍生肽诱导的靶向类器官的细胞毒性T细胞活性在杀伤实验中得到验证。值得注意的是,来自circTBC1D15的抗原肽YGFNEILKK不仅被认为是类器官的HLA-ABC呈递肽,而且还显著降低了肿瘤类器官的存活率。本研究的发现强调了产生肿瘤抗原的一个关键亚群,这对靶向肿瘤特异性circRNA具有重要意义。 展开更多
关键词 Tumor antigen Patient-derived hepatobiliary tumor organoid Circular RNA Mass-spectrometry-based immunopeptidomics
下载PDF
Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation 被引量:2
20
作者 Jiaqi Sun Junzheng Yang +3 位作者 Xiaoli Miao Horace HLoh Duanqing Pei Hui Zheng 《Cell Regeneration》 2021年第1期64-75,共12页
Background:Epigenetic modifications,namely non-coding RNAs,DNA methylation,and histone modifications such as methylation,phosphorylation,acetylation,ubiquitylation,and sumoylation play a significant role in brain deve... Background:Epigenetic modifications,namely non-coding RNAs,DNA methylation,and histone modifications such as methylation,phosphorylation,acetylation,ubiquitylation,and sumoylation play a significant role in brain development.DNA methyltransferases,methyl-CpG binding proteins,and ten-eleven translocation proteins facilitate the maintenance,interpretation,and removal of DNA methylation,respectively.Different forms of methylation,including 5-methylcytosine,5-hydroxymethylcytosine,and other oxidized forms,have been detected by recently developed sequencing technologies.Emerging evidence suggests that the diversity of DNA methylation patterns in the brain plays a key role in fine-tuning and coordinating gene expression in the development,plasticity,and disorders of the mammalian central nervous system.Neural stem cells(NSCs),originating from the neuroepithelium,generate neurons and glial cells in the central nervous system and contribute to brain plasticity in the adult mammalian brain.Main body:Here,we summarized recent research in proteins responsible for the establishment,maintenance,interpretation,and removal of DNA methylation and those involved in the regulation of the proliferation and differentiation of NSCs.In addition,we discussed the interactions of chemicals with epigenetic pathways to regulate NSCs as well as the connections between proteins involved in DNA methylation and human diseases.Conclusion:Understanding the interplay between DNA methylation and NSCs in a broad biological context can facilitate the related studies and reduce potential misunderstanding. 展开更多
关键词 DNA methylation Neural stem cells DNA methyltransferases Methyl-CpG binding proteins Ten-eleven translocations Vitamin C
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部