期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Decoupled water electrolysis:Flexible strategy for pure hydrogen production with small voltage inputs
1
作者 Kexin Zhou Jiahui Huang +3 位作者 Daili Xiang Aijiao Deng Jialei Du Hong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期340-356,共17页
Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the... Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved. 展开更多
关键词 Hydrogen production Conventional water splitting Decoupled water splitting Redox mediators Biomimetics
下载PDF
Recent progress on Sn_(3)O_(4)nanomaterials for photocatalytic applications
2
作者 Xin Yu Congcong Li +3 位作者 Jian Zhang Lili Zhao Jinbo Pang Longhua Ding 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期231-244,共14页
Tin(IV)oxide(Sn_(3)O_(4))is layered tin and exhibits mixed valence states.It has emerged as a highly promising visible-light pho-tocatalyst,attracting considerable attention.This comprehensive review is aimed at provi... Tin(IV)oxide(Sn_(3)O_(4))is layered tin and exhibits mixed valence states.It has emerged as a highly promising visible-light pho-tocatalyst,attracting considerable attention.This comprehensive review is aimed at providing a detailed overview of the latest advance-ments in research,applications,advantages,and challenges associated with Sn_(3)O_(4)photocatalytic nanomaterials.The fundamental con-cepts and principles of Sn_(3)O_(4)are introduced.Sn_(3)O_(4)possesses a unique crystal structure and optoelectronic properties that allow it to ab-sorb visible light efficiently and generate photoexcited charge carriers that drive photocatalytic reactions.Subsequently,strategies for the control and improved performance of Sn_(3)O_(4)photocatalytic nanomaterials are discussed.Morphology control,ion doping,and hetero-structure construction are widely employed in the optimization of the photocatalytic performance of Sn_(3)O_(4)materials.The effective imple-mentation of these strategies improves the photocatalytic activity and stability of Sn_(3)O_(4)nanomaterials.Furthermore,the review explores the diverse applications of Sn_(3)O_(4)photocatalytic nanomaterials in various fields,such as photocatalytic degradation,photocatalytic hydro-gen production,photocatalytic reduction of carbon dioxide,solar cells,photocatalytic sterilization,and optoelectronic sensors.The discus-sion focuses on the potential of Sn_(3)O_(4)-based nanomaterials in these applications,highlighting their unique attributes and functionalities.Finally,the review provides an outlook on the future development directions in the field and offers guidance for the exploration and de-velopment of novel and efficient Sn_(3)O_(4)-based nanomaterials.Through the identification of emerging research areas and potential avenues for improvement,this review aims to stimulate further advancements in Sn_(3)O_(4)-based photocatalysis and facilitate the translation of this promising technology into practical applications. 展开更多
关键词 PHOTOCATALYSIS Sn_(3)O_(4)nanomaterials building heterostructures antibacterial therapy water splitting
下载PDF
Duplex Interpenetrating-Phase FeNiZn and FeNi_(3)Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting 被引量:4
3
作者 Qiuxia Zhou Caixia Xu +4 位作者 Jiagang Hou Wenqing Ma Tianzhen Jian Shishen Yan Hong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期72-89,共18页
The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanop... The sluggish kinetics of both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)generate the large overpotential in water electrolysis and thus high-cost hydrogen production.Here,multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi_(3)intermetallic heterostructure is in situ constructed on NiFe foam(FeNiZn/FeNi_(3)@NiFe)by dealloying protocol.Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone,FeNiZn/FeNi_(3)@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER(η_(1000)=367/245 mV)as well as the robust durability during the 400 h testing in alkaline solution.The as-built water electrolyzer with FeNiZn/FeNi_(3)@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm^(-2)as well long working lives.Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi_(3)intermetallic generates the modulated electron structure state and optimized intermediate chemisorption,thus diminishing the energy barriers for hydrogen production in water splitting.With the merits of fine performances,scalable fabrication,and low cost,FeNiZn/FeNi_(3)@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting. 展开更多
关键词 HETEROSTRUCTURE Interface effect DEALLOYING Bifunctional electrocatalyst Overall water splitting
下载PDF
Recent Advances in Interface Engineering for Electrocatalytic CO_(2) Reduction Reaction 被引量:9
4
作者 Junjun Li Sulaiman Umar Abbas +2 位作者 Haiqing Wang Zhicheng Zhang Wenping Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期499-533,共35页
Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically re... Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically reduce CO_(2) emission and contribute to carbon-neutral cycle. E cient electrocatalytic reduction of chemically inert CO_(2) is challenging from thermodynamic and kinetic points of view. Therefore,low-cost,highly e cient,and readily available electrocatalysts have been the focus for promoting the conversion of CO_(2). Very recently,interface engineering has been considered as a highly e ective strategy to modulate the electrocatalytic performance through electronic and/or structural modulation,regulations of electron/proton/mass/intermediates,and the control of local reactant concentration,thereby achieving desirable reaction pathway,inhibiting competing hydrogen generation,breaking binding-energy scaling relations of intermediates,and promoting CO_(2) mass transfer. In this review,we aim to provide a comprehensive overview of current developments in interface engineering for CO_(2) RR from both a theoretical and experimental stand-point,involving interfaces between metal and metal,metal and metal oxide,metal and nonmetal,metal oxide and metal oxide,organic molecules and inorganic materials,electrode and electrolyte,molecular catalysts and electrode,etc. Finally,the opportunities and challenges of interface engineering for CO_(2) RR are proposed. 展开更多
关键词 Interface engineering CO_(2)reduction reaction ELECTROCATALYSIS HETEROSTRUCTURE
下载PDF
Ultra-stable CsPbBr3 Perovskite Nanosheets for X-Ray Imaging Screen 被引量:6
5
作者 Liangling Wang Kaifang Fu +3 位作者 Ruijia Sun Huqiang Lian Xun Hu Yuhai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期263-270,共8页
Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low che... Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low chemical yield hinders their upscale production for practical use.Meanwhile,the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals.Herein,we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent,saving over 95% of the solvent for the unity mass nanocrystal production.The perovskite colloid exhibits record stability upon long-term storage for up to 8 months,preserving a photoluminescence quantum yield of 63% in solid state.Importantly,the colloidal nanosheets show self-assembly behavior upon slow solidification,generating a crack-free thin film in a large area.The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging.Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals,which may inspire the industrial optoelectronic application of large-area perovskite film. 展开更多
关键词 CsPbBr3 PEROVSKITE NANOSHEETS SELF-ASSEMBLY X-RAY imaging SCREEN
下载PDF
Sn/n3O4-x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance 被引量:4
6
作者 Rui-qi Yang Na Liang +7 位作者 Xuan-yu Chen Long-wei Wang Guo-xin Song Yan-chen Ji Na Ren Ya-wei Lü Jian Zhang Xin Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期150-159,共10页
Sn3O4, a common two-dimensional semiconductor photocatalyst, can absorb visible light.However, owing to its rapid recombination of photogenerated electron-hole pairs, its absorption is not sufficient for practical app... Sn3O4, a common two-dimensional semiconductor photocatalyst, can absorb visible light.However, owing to its rapid recombination of photogenerated electron-hole pairs, its absorption is not sufficient for practical application.In this work, a Sn nanoparticle/Sn3O4-x nanosheet heterostructure was prepared by in situ reduction of Sn3O4 under a H2 atmosphere.The Schottky junctions formed between Sn and Sn3O4-x can enhance the photogenerated carrier separation ability.During the hydrogenation process, a portion of the oxygen in the semiconductor can be extracted by hydrogen to form water, resulting in an increase in oxygen vacancies in the semiconductor.The heterostructure showed the ability to remove Rhodamine B.Cell cytocompatibility experiments proved that Sn/Sn3O4-x can significantly enhance cell compatibility and reduce harm to organisms.This work provides a new method for the fabrication of a Schottky junction composite photocatalyst rich in oxygen vacancies with enhanced photocatalytic performance. 展开更多
关键词 PHOTOCATALYSIS tin oxide oxygen vacancy Schottky junction PHOTODEGRADATION
下载PDF
Chromium phosphide nanoparticles embedded in porous nitrogen-/phosphorus-doped carbon as efficient electrocatalysts for a nitrogen reduction reaction 被引量:1
7
作者 Jiayuan Yu Bin Chang +6 位作者 Wanqiang Yu Xiao Li Dufu Wang Zhinian Xu Xiaoli Zhang Hong Liu Weijia Zhou 《Carbon Energy》 SCIE CAS 2022年第2期237-245,共9页
The resource recovery of heavy metals from effluent has significant environmental implications and potential commercial value.Chromium phosphide nanoparticles embedded in a nitrogen-/phosphorus-doped porous carbon mat... The resource recovery of heavy metals from effluent has significant environmental implications and potential commercial value.Chromium phosphide nanoparticles embedded in a nitrogen-/phosphorus-doped porous carbon matrix(CrP/NPC)are synthesized via a consecutive Cr^(6+)leachate treatment and resource recovery process.Electrochemical testing shows that CrP/NPC shows excellent nitrogen reduction reaction(NRR)performance,which yields the highest NH_(3) production rate of 22.56μg h^(−1) mg^(−1)_(cat).and Faradaic efficiency(16.37%)at−0.5 V versus the reversible hydrogen electrode in a 0.05M Na_(2)SO_(4) aqueous solution,as well as robust catalytic stability.The isotopic experiments using ^(15)N^(2) as a nitrogen source confirm that the detected NH_(3) is derived from the NRR process.Finally,density functional theory(DFT)calculations show that the electron deficiency environment of the Cr site can significantly reduce the barrier of the NRR process and promote the formation of intermediate species. 展开更多
关键词 BIOSYNTHESIS carbon-based materials chromium phosphide leachate treatment nitrogen reduction reaction resource recovery
下载PDF
MoC nanoclusters anchored Ni@N‐doped carbon nanotubes coated on carbon fiber as three‐dimensional and multifunctional electrodes for flexible supercapacitor and self‐heating device 被引量:1
8
作者 Fan Liu Jietong He +5 位作者 Xiaoyu Liu Yuke Chen Zhen Liu Duo Chen Hong Liu Weijia Zhou 《Carbon Energy》 CAS 2021年第1期129-141,共13页
With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles ... With the rapid development of different kinds of wearable electronic devices,flexible and high‐capacity power sources have attracted increasing attention.In this study,a facile strategy to fabricate Ni nanoparticles embedded in N‐doped carbon nanotubes(CNTs)(Ni@NCNTs)homogeneously coated on the surface of carbon fiber with a multistructural component of molybdenum carbide(MoC/Ni@NCNTs/CC)was synthesized.There are two forms of MoC in MoC/Ni@NCNTs/CC,including the MoC nanoclusters in a size of 2 to 4 nm anchored on Ni@N‐doped CNTs and the MoC nanoparticles as an interface between MoC/Ni@NCNTs and carbon cloth(CC).Multifunctional MoC/Ni@NCNTs/CC served as both positive and negative electrode and a heater in flexible supercapacitors and in wearable devices,which exhibited excellent electrochemical and heating performance.Besides,an all‐solid‐state supercapacitor consists of two pieces of MoC/Ni@NCNTs/CC that exhibited extraordinary energy storage performance with high‐energy density(78.7μWh/cm2 at the power density of 2.4 mW/cm2)and excellent cycling stability(≈91%capacity retention after 8000 cycles).Furthermore,all‐solid‐state flexible supercapacitors were incorporated with an MoC/Ni@NCNTs/CC electrode into self‐heating flexible devices for keeping the human body warm.Thus,MoC/Ni@NCNTs/CC is a promising electrode material for flexible and wearable storage systems and heating electronic application. 展开更多
关键词 carbon nanotube molybdenum carbide NANOCLUSTERS self‐heating SUPERCAPACITOR
下载PDF
Cascade electrolysis and thermocatalysis: a reliable system for upgrading C1 to C4 hydrocarbons 被引量:1
9
作者 Chao-Yue Sun Wen Li Hai-Qing Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期410-412,共3页
The carbon cycle is important for maintaining a stable climate and carbon balance on Earth. Renewable-electricitydriven upcycling of carbon dioxide (CO_(2)) into value-added multi-carbon molecules is a potentially sus... The carbon cycle is important for maintaining a stable climate and carbon balance on Earth. Renewable-electricitydriven upcycling of carbon dioxide (CO_(2)) into value-added multi-carbon molecules is a potentially sustainable way to alleviate greenhouse gas emission and enable production of various chemicals and fuels. 展开更多
关键词 CYCLING hydrocarbons enable
原文传递
Electrospinning-derived functional carbon-based materials for energy conversion and storage
10
作者 Xinyu Ren Hong Liu +1 位作者 Jingang Wang Jiayuan Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期3-13,共11页
The over-exploitation of fossil fuel energy has brought about serious environmental problems.It would be of great significance to construct efficient energy conversion and storage system to maximize utilize renewable ... The over-exploitation of fossil fuel energy has brought about serious environmental problems.It would be of great significance to construct efficient energy conversion and storage system to maximize utilize renewable energy,which contributes to reducing environmental hazards.For the past few years,in terms of electrocatalysis and energy storage,carbon fiber materials show great advantages due to its outstanding electrical conductivity,good flexibility and mechanical property.As a simple and low-cost technique,electrospinning can be employed to prepare various nanofibers.It is noted that the functional fiber materials with different special structure and composition can be obtained for energy conversion and storage by combining electrospinning with other post-processing.In this paper,the structural design,controllable synthesis and multifunctional applications of electrospinning-derived functional carbon-based materials(EFCMs)is reviewed.Firstly,we briefly introduce the history,basic principle and typical equipment of electrospinning.Then we discuss the strategies for preparing EFCMs with different structures and composition in detail.In addition,we show recently the application of advanced EFCMs in energy conversion and storage,such as nitrogen species reduction reaction,CO_(2) reduction reaction,oxygen reduction reaction,water-splitting,supercapacitors and ion batteries.In the end,we propose some perspectives on the future development direction of EFCMs. 展开更多
关键词 ELECTROSPINNING Carbon materials Functional fiber Energy conversion Energy storage ELECTROCATALYSIS
原文传递
Polyoxometalates-derived nanostructures for electrocatalysis application
11
作者 Chao-Yue Sun Wen Li +2 位作者 Kai Wang Wei-Jia Zhou Hai-Qing Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期1845-1866,共22页
The conversion of intermittent renewable electrical energy to chemical energy is of great importance which can not only mitigate current energy and environmental crisis but also contribute to the ongoing carbon neutra... The conversion of intermittent renewable electrical energy to chemical energy is of great importance which can not only mitigate current energy and environmental crisis but also contribute to the ongoing carbon neutrality national strategy.Electrocatalysis is serving as a low-carbon conversion technology that enables green and efficient energy conversion mainly through hydrogen evolution reaction(HER),carbon dioxide reduction reaction(CO_(2)RR),and nitrogen reduction reaction(NRR).The core of electrocatalysis is the design and construction of low-cost high-activity and high-stability electrocatalyst to drive reaction thermodynamics and kinetics.The employment of polyoxometalates(POMs)as platforms or precursors to construct different types of electrocatalysts has been widely reported.Herein,we systematically summarized the recent advances in POM-derived nanostructures for electrocatalysis application.The strategies for precursor design and electrocatalyst synthesis were briefly introduced.The morphology control,phase control,composite modulation,and heterostructure engineering in POM-derived nanostructures were presented in detail.The structure–activity relationship of POM-derived nanostructures is fully discussed for HER CO_(2)RR,and NRR applications.Finally,the current challenges and future outlooks of POM-derived nanostructures are summarized to provide insights toward high-efficiency electrocatalysts for energy conversion technologies. 展开更多
关键词 MICROFORMING Cylindrical compression Size effects Grain orientation Inhomogeneous deformation
原文传递
One-step construction of strongly coupled Co_(3)V_(2)O_(8)/Co_(3)O_(4)/MXene heterostructure via in-situ Co-F bonds for high performance all-solid-state asymmetric supercapacitors
12
作者 Ji Zhou Bin-Bin Liu +3 位作者 Hu Zheng Wen-Qing Ma Qian Li Cai-Xia Xu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期682-691,共10页
Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x) composite was easily synthesized via one-step succinct-operated hydrothermal process.The interconnected Co_(3)V_(2)O_(8)/Co_(3)O_(4) nanowires network can in-situ grow and... Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x) composite was easily synthesized via one-step succinct-operated hydrothermal process.The interconnected Co_(3)V_(2)O_(8)/Co_(3)O_(4) nanowires network can in-situ grow and anchor on the surface of Ti_(3)C_(2)T_(x) via the strong Co-F bonds and contribute tremendously to depress Ti_(3)C_(2)T_(x) self-restacking.Profiting from the synergistically interplayed effect among the multiple interfaces and high conductivity of Ti_(3)C_(2)T_(x) as well as outstanding stability of the as-designed nanostructure,the optimum Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x)electrode reaches a commendable specific capacitance(up to 3800 mF·cm^(−2)),great rate capability(80%capacitance retention after 20-times current increasing),and preeminent cycling stability(95.4%/85.5%retention at 7000th/20,000th cycle).Moreover,the all-solid-state asymmetric supercapacitor based on Co_(3)V_(2)O_(8)/Co_(3)O_(4)/Ti_(3)C_(2)T_(x) and active carbon can deliver a high energy density of 84.0μWh·cm^(−2) at the power energy of 3.2 mW·cm^(−2),and excellent cycling durability with 87.0%of initial capacitance retention upon 20,000 loops.This work provides a practicable pathway to tailor MXene-based composites for high-performance supercapacitor. 展开更多
关键词 Ti_(3)C_(2)T_(x) Co_(3)V_(2)O_(8)/Co_(3)O_(4) HETEROSTRUCTURE Cathode Supercapacitor
原文传递
Alloy/layer double hydroxide interphasic synergy via nano-heterointerfacing for highly reversible CO_(2)redox reaction in Li-CO_(2)batteries
13
作者 Tianzhen Jian Wenqing Ma +5 位作者 Jiagang Hou Jianping Ma Xianhong Li Haiyang Gao Caixia Xu Hong Liu 《Nano Research》 SCIE EI CSCD 2024年第6期5206-5215,共10页
Li-CO_(2)batteries are among the most intriguing techniques for balancing the carbon cycle,but are challenged by the annoyed thermodynamic barrier of the Li_(2)CO_(3)decomposition reaction.Herein,we demonstrate the el... Li-CO_(2)batteries are among the most intriguing techniques for balancing the carbon cycle,but are challenged by the annoyed thermodynamic barrier of the Li_(2)CO_(3)decomposition reaction.Herein,we demonstrate the electrocatalytic performances of two-dimensional(2D)CoAl-layer double hydroxide(LDH)nanosheets can be significantly improved by trans-dimensional crosslinking with three-dimensional(3D)multilevel nanoporous(MP)-RuCoAl alloy(MP-RuCoAl alloy⊥CoAl-LDH).The MP-RuCoAl alloy⊥CoAl-LDH with multiscale pore channels and abundant nano-heterointerface is directly prepared by controllable etching Al from a Ru-Co-Al master alloy along with simultaneous partial oxidization of Al and Co atoms.The MP-RuCoAl is composed of various intermetallic compounds and Ru with abundant grain boundaries,and forms numerous heterointerface with 2D CoAl-LDH nanosheets.The multiscale porous metallic network benefits mass and electron transportation as well as discharge product storage and enables a rich multiphase reaction interface.In situ differential electrochemical mass spectrometry shows that the mass-to-charge ratio in the charging process is~0.733 which is consistent with the theoretical value of 3/4,stating that the reversible co-decomposition of Li_(2)CO_(3)and C can be achieved with the MP-RuCoAl alloy⊥CoAl-LDH.The Ketjen black(KB)/MP-RuCoAl⊥CoAl-LDH battery demonstrates a high cyclability for over 2270 h(227 cycles)with a lower voltage gap stabilized at~1.3 V at 200 mA·g^(−1).Our findings here provide useful guidelines for developing high efficiency transition metal based electrocatalysts by coupling with conductive porous substrate for impelling the development of practical Li-CO_(2)battery systems. 展开更多
关键词 heterojunction interface NANOPOROUS Li-CO_(2)battery DEALLOYING
原文传递
Fabrication of patterned transparent conductive glass via laser metal transfer for efficient electrical heating and antibacteria
14
作者 Xiaoyan Liu Ting Zhang +8 位作者 Mengchen Xu Yang Li Haiqing Wang Yuke Chen Xuzihan Zhang Zenan Wang Xiaoyan Li Weijia Zhou Hong Liu 《Nano Research》 SCIE EI CSCD 2024年第3期1578-1584,共7页
Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there ... Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there are still some challenges in fabricating metal films in template-free and normal temperature environment.In this work,we report a flexible and rapid laser metal transfer(LMT)technique for fabricating the various metal films(Cu,Ni,Sn,Al,Fe,and Ag)with different patterns without templates on arbitrary substrates(glass,polyimide(PI)films,and aluminum nitride(AlN)ceramic).Especially,the obtained transparent conductive glass displays high transmittance(more than 90%)and adjustable resistances(≈5Ω).According to the Joule effect,the interface resistance between Cu particles and copper oxide coating produces the high temperature approximately 280℃ at 2 V in a short time(≈60 s)and remains stable at 120℃ over 12 h.At last,the multifunctional glass with Cu patterns also shows excellent bactericidal activity(≈95%).This work demonstrates that laser metal transfer is an exceeding effective means of fabricating the micro/nano structures with potential applications in functional devices. 展开更多
关键词 laser metal transfer(LMT) transparent conductive glass electrical heating copper pattern ANTIBACTERIAL
原文传递
Water Splitting:From Electrode to Green Energy System 被引量:9
15
作者 Xiao Li Lili Zhao +4 位作者 Jiayuan Yu Xiaoyan Liu Xiaoli Zhang Hong Liu Weijia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期103-131,共29页
Hydrogen(H2)production is a latent feasibility of renewable clean energy.The industrial H2 production is obtained from reforming of natural gas,which consumes a large amount of nonrenewable energy and simultaneously p... Hydrogen(H2)production is a latent feasibility of renewable clean energy.The industrial H2 production is obtained from reforming of natural gas,which consumes a large amount of nonrenewable energy and simultaneously produces greenhouse gas carbon dioxide.Electrochemical water splitting is a promising approach for the H2 production,which is sustainable and pollution-free.Therefore,developing efficient and economic technologies for electrochemical water splitting has been an important goal for researchers around the world.The utilization of green energy systems to reduce overall energy consumption is more important for H2 production.Harvesting and converting energy from the environment by different green energy systems for water splitting can efficiently decrease the external power consumption.A variety of green energy systems for efficient producing H2,such as two-electrode electrolysis of water,water splitting driven by photoelectrode devices,solar cells,thermoelectric devices,triboelectric nanogenerator,pyroelectric device or electrochemical water-gas shift device,have been developed recently.In this review,some notable progress made in the different green energy cells for water splitting is discussed in detail.We hoped this review can guide people to pay more attention to the development of green energy system to generate pollution-free H2 energy,which will realize the whole process of H2 production with low cost,pollution-free and energy sustainability conversion. 展开更多
关键词 Water splitting ELECTRODE Green energy system Renewable energy Hydrogen production
下载PDF
Laser Synthesis and Microfabrication of Micro/ Nanostructured Materials Toward Energy Conversion and Storage 被引量:10
16
作者 Lili Zhao Zhen Liu +6 位作者 Duo Chen Fan Liu Zhiyuan Yang Xiao Li Haohai Yu Hong Liu Weijia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期107-154,共48页
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device... Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development. 展开更多
关键词 Laser synthesis Laser microfabrication Micro/nanostructured materials Energy conversion and storage
下载PDF
Weaker Interactions in Zn^(2+)and Organic Ion-pre-intercalated Vanadium Oxide toward Highly Reversible Zinc-ion Batteries 被引量:3
17
作者 Feng Zhang Xiucai Sun +7 位作者 Min Du Xiaofei Zhang Wentao Dong Yuanhua Sang Jianjun Wang Yanlu Li Hong Liu Shuhua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期620-630,共11页
Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinet... Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability. 展开更多
关键词 [N(CH_(3))_(4) Zn]V_(8)O_(20)·3.8H_(2)O nanosheets aqueous zinc-ion battery highly reversible organic ion pre-intercalation zinc-carbon interactions
下载PDF
Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics 被引量:6
18
作者 Yanhao Wang Jinbo Pang +13 位作者 Qilin Cheng Lin Han Yufen Li Xue Meng Bergoi Ibarlucea Hongbin Zhao Feng Yang Haiyun Liu Hong Liu Weijia Zhou Xiao Wang Mark HRummeli Yu Zhang Gianaurelio Cuniberti 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期292-343,共52页
The rapid development of two-dimensional(2D)transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties.In particular,palladium diselenide(PdSe_(2))with a novel penta... The rapid development of two-dimensional(2D)transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties.In particular,palladium diselenide(PdSe_(2))with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research inter-est.Consequently,tremendous research progress has been achieved regarding the physics,chemistry,and electronics of PdSe_(2).Accordingly,in this review,we recapitulate and summarize the most recent research on PdSe_(2),including its structure,properties,synthesis,and appli-cations.First,a mechanical exfoliation method to obtain PdSe_(2) nanosheets is introduced,and large-area synthesis strate-gies are explained with respect to chemical vapor deposition and metal selenization.Next,the electronic and optoelectronic properties of PdSe_(2) and related hetero-structures,such as field-effect transistors,photodetectors,sensors,and thermoelec-tric devices,are discussed.Subsequently,the integration of systems into infrared image sensors on the basis of PdSe_(2) van der Waals heterostructures is explored.Finally,future opportunities are highlighted to serve as a general guide for physicists,chemists,materials scientists,and engineers.Therefore,this com-prehensive review may shed light on the research conducted by the 2D material community. 展开更多
关键词 Palladium diselenide nTMDC Synthesis Field-effect transistors PHOTODETECTORS Sensors
下载PDF
Applications of Carbon Nanotubes in the Internet of Things Era 被引量:1
19
作者 Jinbo Pang Alicja Bachmatiuk +4 位作者 Feng Yang Hong Liu Weijia Zhou Mark HRümmeli Gianaurelio Cuniberti 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期14-28,共15页
The post-Moore's era has boosted the progress in carbon nanotube-based transistors.Indeed,the 5 G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices.... The post-Moore's era has boosted the progress in carbon nanotube-based transistors.Indeed,the 5 G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices.In this perspective,we deliver the readers with the latest trends in carbon nanotube research,including high-frequency transistors,biomedical sensors and actuators,brain–machine interfaces,and flexible logic devices and energy storages.Future opportunities are given for calling on scientists and engineers into the emerging topics. 展开更多
关键词 Carbon nanotubes TRANSISTORS SENSORS Actuators Brain–machine interfaces Energy storage
下载PDF
Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media 被引量:3
20
作者 Jian Zhou Fanfan Wang +3 位作者 Haiqing Wang Shuxian Hu Weijia Zhou Hong Liu 《Nano Research》 SCIE EI CSCD 2023年第2期2085-2093,共9页
Transition metal nitride/carbide(TMN/C)have been actively explored as low-cost hydrogen evolution reaction(HER)electrocatalysts owing to their Pt-like physical and chemical properties.Unfortunately,pure TMN/C suffers ... Transition metal nitride/carbide(TMN/C)have been actively explored as low-cost hydrogen evolution reaction(HER)electrocatalysts owing to their Pt-like physical and chemical properties.Unfortunately,pure TMN/C suffers from strong hydrogen adsorption and lacks active centers for water dissociation.Herein,we developed a switchable WO_(3)-based in situ gas–solid reaction for preparing sophisticated Fe-N doped WC and Fe-C doped WN nanoarrays.Interestingly,the switch of codoping and phase can be effectively manipulated by regulating the amount of ferrocene.Resultant Fe-C-WN and Fe-N-WC exhibit robust electrocatalytic performance for HER in alkaline and acid electrolytes,respectively.The collective collaboration of morphological,phase and electronic effects are suggested to be responsible for the superior HER activity.The smallest|ΔGH*|value of Fe-NWC indicates preferable hydrogen-evolving kinetics on the Fe-N-WC surface for HER under acid condition,while Fe-C-WN is suggested to be beneficial to the adsorption and dissociation of H_(2)O for HER in alkaline electrolyte. 展开更多
关键词 gas–solid reaction tungsten nitride/carbide CODOPING phase regulation hydrogen evolution
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部