期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
1
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites Si C particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Comparative Assessment on Microstructure and Properties of in-situ TiC+Ti_(5)Si_(3)Reinforced TiAl-Sn-Zr Matrix Composites by Spark Plasma Sintering and Argon Protected Sintering 被引量:1
2
作者 姚辉 许晓静 +4 位作者 CAI Chengbin LI Chen CHEN Fenghua LIU Yangguang XIAO Yishui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期199-205,共7页
The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium ma... The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium matrix composites were prepared by discharge plasma sintering(SPS)and argon protective sintering(APS).The results show that the two processes have a negligible effect on the composition and hardness of the samples,but the hardness of the two samples is significantly improved by adding SiCp.The apparent porosity of SPS process is obviously smaller than that of APS process,whereas,the apparent porosity increases slightly with the addition of SiCp.The oxide layer thickness and mass gain of the samples obtained by SPS process are smaller than those obtained by APS process.The oxide thickness and mass gain of both processes are further reduced by adding SiCp.The SPS composites showed the best high temperature oxidation resistance.Therefore,TMCs with Si Cp by SPS can effectively improve the high-temperature oxidation behavior of the materials. 展开更多
关键词 powder metallurgy titanium matrix composites High-temperature oxidation TiC and Ti_(5)Si_(3) Ti-Al-Sn-Zr
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis
3
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
Effect of Solution-ECAP-Aging Treatment on the Microstructure and Properties of TB8 Titanium Alloy
4
作者 陈枫华 许晓静 +3 位作者 LIU Yangguang HU Chaoxing CAO Bin BAI Xiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期669-676,共8页
The microstructure and mechanical properties of the TB8 titanium alloy were controlled by a secondary processing technology of solution-equal channel angular pressing(ECAP)-aging treatment,which combined strong plasti... The microstructure and mechanical properties of the TB8 titanium alloy were controlled by a secondary processing technology of solution-equal channel angular pressing(ECAP)-aging treatment,which combined strong plastic deformation with heat treatment. The effects of ECAP and heat treatment on the microstructure and properties of the titanium alloy were systematically investigated by optical microscopy(OM), scanning electron microscopy(SEM), hardness tests, and tensile property analysis. The results indicate that the metallographic structure without ECAP treatment is mainly equiaxed β-phase, while that after ECAP treatment is equiaxed β-phase with grain fragmentation, slip bands, and new small grains. After 850 ℃ solutionECAP-520 ℃ aging treatment, the titanium alloy has the smallest grain size, while the directionality of tissue growth along the ECAP direction is the most apparent. Under the same solution-aging conditions, the hardness of the titanium alloy increases from 431.5 to 531.2 HV compared to that without ECAP treatment, i e, increases by 23.11%, and the tensile strength increases from 1 045.30 to 1 176.25 MPa, i e, increases by 12.5%. 展开更多
关键词 equal channel angular pressing heat treatment TB8 titanium alloys MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and Mechanical Properties of Al-11.3Zn-3.2Mg-1.3Cu-0.2Zr-0.1Sr-x Ti Extruded Aluminum Alloy with Different Aging Process
5
作者 BAO Guoning XU Xiaojing +6 位作者 HUA Yinqun ZHANG Bin WEI Tao HONG Zhiheng LIU Lele HAN Mengnan SHA Shaohui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1161-1168,共8页
The influences of adding different amount of Ti(0%,0.39%,0.87%)and three kinds of difierent aging processes(T6,T6I6,RRA)on the microstructure and properties of Al-11.3Zn-3.2Mg-1.3Cu-0.2Zr-0.1Sr were investigated.Resul... The influences of adding different amount of Ti(0%,0.39%,0.87%)and three kinds of difierent aging processes(T6,T6I6,RRA)on the microstructure and properties of Al-11.3Zn-3.2Mg-1.3Cu-0.2Zr-0.1Sr were investigated.Results show that an appropriate amount of Ti can effectively inhibit grain growth and thus achieve the efiect of grain refinement.The contribution of dislocation density and dislocation strengthening become the biggest when Ti content is 0.39%.At the same time,the intergranular corrosion depth is the lowest when Ti content is 0.39%.Among the three aging processes,the alloys reach the greatest hardness and tensile strength in T6I6.The biggest tensile strength reaches 716.77 MPa.However,when aging at RRA,the alloys obtain the greatest elongation,reaching 7.2%,as well as the good corrosion resistance. 展开更多
关键词 AL-ZN-MG-CU Ti content aging process MICROSTRUCTURE properties
下载PDF
Effect of Ti and Ce Microalloy on Microstructure and Properties of Al-Si-Cu-Zr-Sr Cast Aluminum Alloy
6
作者 姚辉 许晓静 +3 位作者 ZHANG Rikai ZHANG Peng SUN Zhiwei WANG Hao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期897-902,共6页
The effect of Ti and Ce microalloying on the mechanical properties of Al-9Si-3.5Cu-0.2Zr-0.1Sr cast aluminum alloy was investigated,and it was hoped that the cast aluminum alloy with excellent comprehensive properties... The effect of Ti and Ce microalloying on the mechanical properties of Al-9Si-3.5Cu-0.2Zr-0.1Sr cast aluminum alloy was investigated,and it was hoped that the cast aluminum alloy with excellent comprehensive properties could be obtained.On the basis of Zr-Sr microalloyed cast aluminum alloy(Al-9Si-3.5Cu-0.2Zr-0.1Sr),the effects of 0.2Zr-0.1Sr-0.16Ti ternary microalloying and 0.2Zr-0.1Sr-0.16Ti-0.1Ce quaternary microalloying on the microstructure and properties of the alloy were investigated.The experimental results show that compared with Zr-Sr microalloying,Zr-Sr-Ti microalloying and Zr-Sr-Ti-Ce microalloying can effectively refine the microstructure,improve the modification effect of Si phase,and promote the improvement of Al_(2)Cu phase,thus improving the properties.The higher the degree of microalloying,the hardness is gradually increasing,but the electrical conductivity is gradually decreasing.Zr-Sr-Ti microalloying can increase the tensile strength of the alloy to 400.07 MPa and the elongation to 9.5%.Zr-Sr-Ti-Ce microalloying do not continue to improve the properties of the alloy,and the tensile strength and elongation after fracture decrease to a certain extent due to the addition of Ce.Therefore,the best comprehensive properties can be obtained by ZrSr-Ti microalloying(Al-9Si-3.5Cu-0.2Zr-0.1Sr-0.16Ti). 展开更多
关键词 cast aluminum alloy MICROALLOYING mechanical properties AL-SI-CU
下载PDF
Size effects on process performance and product quality in progressive microforming of shafted gears revealed by experiment and numerical modeling
7
作者 Jun-Yuan Zheng Hui Liu Ming-Wang Fu 《Advances in Manufacturing》 SCIE EI CAS CSCD 2023年第1期1-20,共20页
As one of the indispensable actuating components in micro-systems,the shafted microgear is in great production demand.Microforming is a manufacturing process to produce microgears to meet the needs.Due to the small ge... As one of the indispensable actuating components in micro-systems,the shafted microgear is in great production demand.Microforming is a manufacturing process to produce microgears to meet the needs.Due to the small geometrical size,there are uncertain process performance and product quality issues in this production process.In this study,the shafted microgears were fabricated in two different scaling factors with four grain sizes using a progressively extrusion-blanking method.To explore the unknown of the process,grain-based modeling was proposed and employed to simulate the entire forming process.The results show that when the grains are large,the anisotropy of single grains has an obvious size effect on the forming behavior and process performance;and the produced geometries and surface quality are worsened;and the deformation load is decreased.Five deformation zones were identified in the microstructures with different hardness and distributions of stress and strain.The simulation by using the proposed model successfully predicted the formation of zones and revealed the inhomogeneous deformation in the forming process.The undesirable geometries of microgears including material unfilling,burr and inclination were observed on the shaft and teeth of gear,and the inclination size is increased obviously with grain size.To avoid the formation of inclination and material unfilling,the punch was redesigned,and a die insert was added to constraint the bottom surface of the gear teeth.The new products had then the better forming quality. 展开更多
关键词 MICROFORMING Microprocess performance Microforming quality Size effect affected deformation behavior Die design optimization
原文传递
An extraordinary-performance gradient nanostructured Hadfield manganese steel containing multi-phase nanocrystalline-amorphous core-shell surface layer by laser surface processing
8
作者 Wanting Sun Jiasi Luo +2 位作者 Yim Ying Chan J.H.Luan Xu-Sheng Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第3期209-222,共14页
Reducing grain size(i.e.increasing the fraction of grain boundaries)could effectively strengthen nanograined metals but inevitably sacrifices the ductility and possibly causes a strengthening-softening transition belo... Reducing grain size(i.e.increasing the fraction of grain boundaries)could effectively strengthen nanograined metals but inevitably sacrifices the ductility and possibly causes a strengthening-softening transition below a critical grain size.In this work,a facile laser surface remelting-based technique was employed and optimized to fabricate a∼600μm-thick heterogeneous gradient nanostructured layer on an austenitic Hadfield manganese steel,in which the average grain size is gradually decreased from∼200μm in the matrix to only∼8 nm in the nanocrystalline-amorphous core-shell topmost surface.Atomic-scale microstructural characterizations dissected the gradient refinement processes along the gradient direction,i.e.transiting from the dislocations activities and twinning in sub-region to three kinds of martensitic transformations,and finally a multi-phase nanocrystalline-amorphous core-shell structural surface.Mechanical tests(e.g.nanoindentation,bulk-specimen tensile,and micro-pillar compression)were conducted along the gradient direction.It confirms a tensile strength of∼1055 MPa and ductility of∼10.5%in the laser-processed specimen.Particularly,the core-shell structural surface maintains ultra-strong(tensile strength of∼1.6 GPa,micro-pillar compressive strength of∼4 GPa at a strain of∼8%,and nanoindentation hardness of∼7.7 GPa)to overcome the potential strengthening-softening transition.Such significant strengthening effects are ascribed to the strength-ductility synergetic effects-induced extra work hardening ability in gradient nanostructure and the well-maintained dislocation activities inside extremely refined nanograins in the multi-phase nanocrystalline-amorphous core-shell structural surface,which are evidenced by atomic-scale observations and theoretical analysis.This study provides a unique hetero-nanostructure through a facile laser-related technique for extraordinary mechanical performance. 展开更多
关键词 Laser surface processing Hadfield manganese steel Gradient nanostructure Nanocrystalline-amorphous Martensitic transformation
原文传递
Microwave heating as a universal method to transform confined molecules into armchair graphene nanoribbons
9
作者 Haoyuan Zhang Yingzhi Chen +11 位作者 Kunpeng Tang Ziheng Lin Xuan Li Hongwei Zhang Yifan Zhang Chi Ho Wong Chi Wah Leung Chee Leung Mak Yuan Hu Weili Cui Kecheng Cao Lei Shi 《Nano Research》 SCIE EI CSCD 2023年第7期10644-10651,共8页
Armchair graphene nanoribbons(AGNRs)with sub-nanometer width are potential materials for the fabrication of novel nanodevices thanks to their moderate direct band gaps.AGNRs are usually synthesized by polymerizing pre... Armchair graphene nanoribbons(AGNRs)with sub-nanometer width are potential materials for the fabrication of novel nanodevices thanks to their moderate direct band gaps.AGNRs are usually synthesized by polymerizing precursor molecules on substrate surface.However,it is time-consuming and not suitable for large-scale production.AGNRs can also be grown by transforming precursor molecules inside single-walled carbon nanotubes(SWCNTs)via furnace annealing,but the obtained AGNRs are normally twisted.In this work,microwave heating is applied for transforming precursor molecules into AGNRs.The fast heating process allows synthesizing the AGNRs in seconds.Several different molecules were successfully transformed into AGNRs,suggesting that it is a universal method.More importantly,as demonstrated by Raman spectroscopy,aberrationcorrected high-resolution transmission electron microscopy and theoretical calculations,less twisted AGNRs are synthesized by the microwave heating than the furnace annealing.Our results reveal a route for rapid production of AGNRs in large scale,which would benefit future applications in novel AGNRs-based semiconductor devices. 展开更多
关键词 armchair graphene nanoribbons(AGNRs) microwave heating single-walled carbon nanotubes(SWCNTs) Raman spectroscopy
原文传递
Effects of in-situZrB_2 nanoparticles and scandium on microstructure and mechanical property of 7N01 aluminum alloy
10
作者 Xizhou Kai Yuhui Wang +8 位作者 Ruikun Chen Yanjie Peng Anjun Shi Ran Tao Xiangfeng Liang Guirong Li Gang Chen Xiaojing Xu Yutao Zhao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期612-620,I0007,共10页
In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoi... In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoids. The microstructure and mechanical property evolution of the prepared composites and the interaction between ZrB_(2) and Sc were studied in detail. The microstructure investigation shows that the introduction of rare earth scandium(Sc) can promote the distribution of ZrB_(2) nanoparticles, by improving their wettability to the Al melt. Meanwhile, the addition of rare earth Sc also modifies the coarse Al Zn Mg Mn Fe precipitated phases, refines the matrix grains and generates high-melting Al_3(Sc,Zr)/Al_3Sc nanodispersoids. Tensile tests of the composites show that with the combinatorial introduction of ZrB_(2) and Sc, the strength and ductility of the composites are improved simultaneously compared with the corresponding 7N01 alloy, ZrB_(2) /7N01 composite and Sc/7N01 alloy. And the optimum contents of ZrB_(2) and Sc are 3 wt% and 0.2 wt% in this study. The yield strength, ultimate strength and elongation of(3 wt% ZrB_(2) +0.2 wt% Sc)/7N01 composite are 477 MPa, 506 MPa and 9.8%, increased about 18.1%, 12.2%and 38% compared to 7N01 alloy. Furthermore, the cooperation strengthening mechanisms of ZrB_(2) and Sc are also discussed. 展开更多
关键词 7N01 aluminum alloy In-situ ZrB_(2)nanoparticles Rare earth Sc Microstructure Mechanical property Mechanism
原文传递
Development of a new high-shear and low-pressure grinding wheel and its grinding characteristics for Inconel718 alloy
11
作者 Bing LIU Yebing TIAN +3 位作者 Jinguo HAN Linguang LI Zhiqiang GU Xintao HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期278-286,共9页
Nickel-based alloy has been widely used due to its outstanding mechanical properties.However, Nickel-based alloy is a typical difficult-to-machine material, which is a great constrain for its application in the manufa... Nickel-based alloy has been widely used due to its outstanding mechanical properties.However, Nickel-based alloy is a typical difficult-to-machine material, which is a great constrain for its application in the manufacturing field. To improve the surface quality of the ground workpiece, a new high-shear and low-pressure grinding wheel, with high ratio of tangential grinding force to normal grinding force, was fabricated for the grinding of selective laser melting(SLM) manufactured Inconel718 alloy. The principle of high-shear and low-pressure grinding process was introduced in detail, which was quite different from the conventional grinding process. The fabrication process of the new grinding wheel was illustrated. A serial of experiments with different processing parameters were carried out to investigate the grinding performance of the developed grinding wheel via analyzing surface roughness and surface morphology of the ground workpiece.The optimal processing parameters of high-shear and low-pressure grinding were obtained. The surface roughness of ground workpiece was reduced to 0.232 μm from the initial value of 0.490 μm under the optimal grinding conditions. It was found that the initial scratches on the ground workpiece were almost completely removed after the observations with the metalloscopy and the fieldemission scanning electron microscopy(FE-SEM). The capability of the newly developed highshear and low-pressure grinding wheel was validated. 展开更多
关键词 GRINDING Grinding wheel High-shear and low-pressure grinding Inconel718 alloy Selective laser melting(SLM)
原文传递
Achieving ultrahigh strength and ductility in high-entropy alloys via dual precipitation
12
作者 J.M.Guo B.C.Zhou +6 位作者 S.Qiu H.J.Kong M.C.Niu J.H.Luan T.L.Zhang H.Wu Z.B.Jiao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第35期67-77,共11页
The strength-ductility trade-offhas been a longstanding dilemma in metallic materials.Here we report an innovative approach to achieve a high strength-ductility synergy via dual precipitation of sheared and bypassed p... The strength-ductility trade-offhas been a longstanding dilemma in metallic materials.Here we report an innovative approach to achieve a high strength-ductility synergy via dual precipitation of sheared and bypassed precipitates.(Ni_(2) Co_(2) FeCr)_(96-x) Al_(4) Nb_(x)(at.%)alloys strengthened by nanoscale L12 particles and Laves precipitates were selected as a model for this study,and their precipitate microstructures and mechanical properties were thoroughly investigated.The dual-precipitation-strengthened alloys exhibit a yield strength of more than 1400 MPa,an ultimate tensile strength of over 1800 MPa,and a uniform elon-gation of 18%,thus achieving a high strength-ductility synergy.Our analysis reveals that the nanoscale L1_(2) precipitates contribute to the strength via the particle shearing mechanism,whereas the Laves phase provides the strengthening through the Orowan bypass mechanism.The study of deformation microstruc-tures shows that the L1_(2) precipitates are sheared by stacking faults,which facilitates long-range disloca-tion gliding through the matrix.As a result,deformation induces the formation of hierarchical stacking fault networks and immobile Lomer-Cottrell locks,which effectively enhance the work hardening ca-pability and plastic stability,thereby resulting in a high ductility at high strength levels.Dislocations are piled-up against the interface between the Laves precipitates and matrix,which increases the work hardening capability at the early stages of plastic deformation but causes stress concentrations.The dual precipitation strategy may be useful for many other alloys for achieving superior mechanical properties for technological applications. 展开更多
关键词 High-entropy alloy Dual precipitation Precipitation strengthening Deformation mechanism
原文传递
Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach 被引量:7
13
作者 Guang-Jian Yuan Xian-Cheng Zhang +2 位作者 Bo Chen Shan-Tung Tu Cheng-Cheng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第3期28-38,共11页
A crystal plasticity model is developed to predict the cyclic plasticity during the low-cycle fatigue of GH4169 superalloy.Accumulated plastic slip and energy dissipation as fatigue indicator parameters(FIPs)are used ... A crystal plasticity model is developed to predict the cyclic plasticity during the low-cycle fatigue of GH4169 superalloy.Accumulated plastic slip and energy dissipation as fatigue indicator parameters(FIPs)are used to predict fatigue crack initiation and the fatigue life until failure.Results show that fatigue damage is most likely to initiate at triple points and grain boundaries where severe plastic slip and energy dissipation are present.The predicted fatigue life until failure is within the scatter band of factor 2 when compared with experimental data for the total strain amplitudes ranging from 0.8%to 2.4%.Microscopically,the adjacent grain arrangements and their interactions account for the stress concentration.In addition,different sets of grain orientations with the same total grain numbers of 150 were generated using the present model.Results show that different sets have significant influence on the distribution of stresses between each individual grain at the meso-scale,although little effect is found on the macroscopic length-scale. 展开更多
关键词 Crystal PLASTICITY FATIGUE Finite element Life prediction MICRO-MECHANICS Nickel-base SUPERALLOY
原文传递
Microstructure and properties of Ti-6Al-4V fabricated by low-power pulsed laser directed energy deposition 被引量:5
14
作者 Hua Tan Mengle Guo +3 位作者 Adam T. Clare Xin Lin Jing Chen Weidong Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第9期2027-2037,共11页
Thin-wall structures of Ti-6A1-4V were fabricated by low-power pulsed laser directed energy deposition. During deposition, consistent with prior reports, columnar grains were observed which grew from the bottom toward... Thin-wall structures of Ti-6A1-4V were fabricated by low-power pulsed laser directed energy deposition. During deposition, consistent with prior reports, columnar grains were observed which grew from the bottom toward the top of melt pool tail. This resulted in a microstructure mainly composed of long and thin prior epitaxial β columnar grains (average width ^200μm). A periodic pattern in epitaxial growth of grains was observed, which was shown to depend upon laser traverse direction. Utilizing this, a novel means was proposed to determine accurately the fusion boundary of each deposited layer by inspection of the periodic wave patterns. As a result it was applied to investigate the influence of thermal cycling on microstructure evolution. Results showed that acicular martensite,α' phase, and a small amount of Widmanstatten, a laths, gradually converted to elongated acicular a and a large fraction of Widmanstatten a laths under layer-wise thermal cycling. Tensile tests showed that the yield strength, ultimate tensile strength and elongation of Ti-6Al-4V thin wall in the build direction were 9.1 %, 17.3% and 42% higher respectively than those typically observed in forged solids of the same alloy. It also showed the yield strength and ultimate tensile strength of the transverse tensile samples both were 13.3% higher than those from the build direction due to the strengthening effect of a large number of vertical β grain boundaries, but the elongation was 69.7% lower than that of the build direction due to the uneven grain deformation of β grains. 展开更多
关键词 Directed energy DEPOSITION TI-6AL-4V Microstructure Thermal CYCLE HISTORY Mechanical properties
原文传递
Microstructural features of biomedical cobalt–chromium–molybdenum(CoCrMo) alloy from powder bed fusion to aging heat treatment 被引量:5
15
作者 Haoqing Li Ming Wang +2 位作者 Dianjun Lou Weilong Xia Xiaoying Fang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期146-156,共11页
The design freedom of powder bed fusion process selective laser melting(SLM)enables flexibility to manufacture customized,geometrically complex medical implants directly from the CAD models.Cobased alloys have adequat... The design freedom of powder bed fusion process selective laser melting(SLM)enables flexibility to manufacture customized,geometrically complex medical implants directly from the CAD models.Cobased alloys have adequate wear and corrosion resistance,fatigue strength,and biocompatibility,which enables the alloys to be widely used in medical devices.This work aims to investigate the evolution of microstructures and their influence on tribological property of CoCrMo alloy processed by SLM and aging heat treatment.The results showed that very weak<110>texture along the building direction and microsegregation along cellular boundaries were produced.The presence of high residual stress and fine cellular dendrite structure has a pronounced hardening effect on the as-SLM and aging-treated alloys at moderate temperatures.Furthermore,the hexagonalεphase transformed from theγmatrix during SLM became significant after subsequent aging at moderate temperatures,which further increased the nanohardness and scratch resistance.High temperature(1150℃)heating caused homogenized recrystallization microstructure free of residual stress andεphase,which sharply decreased the hardness and scratch resistance.The material parallel to the building direction exhibited improved tribological property in both SLMed and aging-treated alloy than that of the material perpendicular to the building direction.The anisotropy in frictional performance may be considered when designing CoCrMo dental implants using laser additive manufacturing. 展开更多
关键词 Selective laser melting CoCrMo alloy NANOINDENTATION Nano-scratch test
原文传递
Evolution of microstructure and intervariant boundaries ofαphase in electron beam melted and heat-treated Ti-6Al-4V alloy
16
作者 Ming Wang Hao-Qing Li +3 位作者 Hong Guo Liu Feng Shu-Yu Liu Xiao-Ying Fang 《Rare Metals》 SCIE EI CAS CSCD 2021年第8期2118-2126,共9页
It is important to understand the correlation between grain morphology and intervariant boundaries of theαphase after heat treatment belowβtransus of the electron beam melted(EBMed)Ti-6 Al-4 V alloy.Scanning electro... It is important to understand the correlation between grain morphology and intervariant boundaries of theαphase after heat treatment belowβtransus of the electron beam melted(EBMed)Ti-6 Al-4 V alloy.Scanning electron microscopy(SEM)and electron backscatter diffraction(EBSD)analysis have shown about 99%αphase and 1%βphase in the heat-treated samples when the temperature rises to 950℃.Four distinct types ofαgrain morphology have been found:allotromorphousα,relatively coarseαplate,large precipitationαand granularα.A single peak of the intervariant boundary with the misorientation of 60°/[1120]associated with Burgers orientation relationship(OR)was found in the allotromorphousαcolony.Multiple intervariant boundaries mixed with a fraction of general high-angle grain boundary(GHABs,not Burgers OR)were present in the relatively coarseαplate colony.Almost only low-angle grain boundaries(LABs)with the misorientation of<5°were found in the large precipitationαgrains.βphase tends to distribute around the boundaries of relatively coarseαplates.It suggests that different formation mechanisms are involved in the distinct types ofαgrain morphology. 展开更多
关键词 Intervariant boundaries Electron beam melting Ti-6Al-4V alloy Heat treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部