期刊文献+
共找到592篇文章
< 1 2 30 >
每页显示 20 50 100
Engineering g-C_(3)N_(4)based materials for advanced photocatalysis:Recent advances
1
作者 Xin-Lian Song Lei Chen +2 位作者 Li-Jiao Gao Jin-Tao Ren Zhong-Yong Yuan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期166-197,共32页
Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti... Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications. 展开更多
关键词 Graphitic carbon nitride g-C_(3)N_(4) Design strategies PHOTOCATALYSIS PHOTOCATALYSTS Reaction mechanism
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
2
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Nacre-inspired MXene-based film for highly sensitive piezoresistive sensing over a broad sensing range 被引量:1
3
作者 Gaofeng Wang Lingxian Meng +3 位作者 Xinyi Ji Xuying Liu Jiajie Liang Shuiren Liu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期463-475,共13页
As the main component of wearable electronic equipment,flexible pressure sensors have attracted wide attention due to their excellent sensitivity and their promise with respect to applications in health monitoring,ele... As the main component of wearable electronic equipment,flexible pressure sensors have attracted wide attention due to their excellent sensitivity and their promise with respect to applications in health monitoring,electronic skin,and human-computer interactions.However,it remains a significant challenge to achieve epidermal sensing over a wide sensing range,with short response/recovery time and featuring seamless conformability to the skin simultaneously.This is critical since the capture of minute electrophysiological signals is important for health care applications.In this paper,we report the preparation of a nacre-like MXene/sodium carboxymethyl cellulose(CMC)nanocomposite film with a“brick-and-mortar”interior structure using a vacuum-induced self-assembly strategy.The synergistic behavior of the MXene“brick”and flexible CMC“mortar”contributes to attenuating interlamellar self-stacking and creates numerous variable conductive pathways on the sensing film.This resulted in a high sensitivity over a broad pressure range(i.e.,0.03-22.37 kPa:162.13 kPa^(-1);22.37-135.71 kPa:127.88 kPa^(-1);135.71-286.49 kPa:100.58 kPa^(-1)).This sensor also has a low detection limit(0.85 Pa),short response/recovery time(8.58 ms/34.34 ms),and good stability(2000 cycles).Furthermore,we deployed pressure sensors to distinguish among tiny particles,various physiological signals of the human body,space arrays,robot motion monitoring,and other related applications to demonstrate their feasibility for a variety of health and motion monitoring use cases. 展开更多
关键词 Flexible pressure sensor MXene BIOINSPIRED Physiological signals Interlayer spacing
下载PDF
Alloy design for laser powder bed fusion additive manufacturing:a critical review 被引量:1
4
作者 Zhuangzhuang Liu Qihang Zhou +4 位作者 Xiaokang Liang Xiebin Wang Guichuan Li Kim Vanmeensel Jianxin Xie 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期29-63,共35页
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi... Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work. 展开更多
关键词 laser powder bed fusion alloy design PRINTABILITY crack mitigation
下载PDF
Editorial for special issue on advanced materials for energy storage and conversion 被引量:4
5
作者 Qiao-bao Zhang Yong-chang Liu Xiao-bo Ji 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1545-1548,共4页
The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy... The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy storage and conversion systems.Amongst a wealth of energy storage devices,Li/Na/K/Zn/Mg ion batteries,metal-air batteries,and lithium-sulfur/all-solid-state batteries together with supercapacitors as advanced power sources have attracted considerable interest due to their conspicuous merits of high energy density,long cycle life,and good rate capability. 展开更多
关键词 ENERGY utilizing LITHIUM
下载PDF
Tuning the crystallinity of titanium nitride on copper-embedded carbon nanofiber interlayers for accelerated electrochemical kinetics in lithium-sulfur batteries
6
作者 Yinyu Xiang Liqiang Lu +4 位作者 Feng Yan Debarun Sengupta Petra Rudolf Ajay Giri Prakash Kottapalli Yutao Pei 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期40-55,共16页
The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the... The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries. 展开更多
关键词 CRYSTALLINITY electrochemical kinetics INTERLAYER lithium-sulfur batteries titanium nitride
下载PDF
Cu,N codoped carbon nanosheets encapsulating ultrasmall Cu nanoparticles for enhancing selective 1,2-propanediol oxidation
7
作者 Yonghai Feng Min Yu +2 位作者 Minjia Meng Lei Liu Dewei Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期27-35,共9页
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited... In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling. 展开更多
关键词 Selective oxidation Copper and nitrogen doped carbon 1 2-PROPANEDIOL Ultrasmall Cu nanoparticles Lactic acid
下载PDF
Nonreciprocal thermal metamaterials:Methods and applications
8
作者 Zhengjiao Xu Chuanbao Liu +2 位作者 Xueqian Wang Yongliang Li Yang Bai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1678-1693,共16页
Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,... Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,it is extremely difficult to achieve nonreciprocity of heat transfer.This review presents the recent developments in thermal nonreciprocity and explores the fundamental theories,which underpin the design of nonreciprocal thermal metamaterials,i.e.,the Onsager reciprocity theorem.Next,three methods for achieving nonreciprocal metamaterials in the thermal field are elucidated,namely,nonlinearity,spatiotemporal modulation,and angular momentum bias,and the applications of nonreciprocal thermal metamaterials are outlined.We also discuss nonreciprocal thermal radiation.Moreover,the potential applications of nonreciprocity to other Laplacian physical fields are discussed.Finally,the prospects for advancing nonreciprocal thermal metamaterials are highlighted,including developments in device design and manufacturing techniques and machine learning-assisted material design. 展开更多
关键词 thermal metamaterials NONRECIPROCITY NONLINEARITY spatiotemporal modulation
下载PDF
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures
9
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries Zinc anodes High zinc utilization Depth of discharge Anode-free structures
下载PDF
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2)
10
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting
11
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
下载PDF
Highly Efficient Broadband Achromatic Microlens Design Based on Low-Dispersion Materials
12
作者 Xueqian Wang Chuanbao Liu +7 位作者 Feilou Wang Weijia Luo Chengdong Tao Yuxuan Hou Lijie Qiao Ji Zhou Jingbo Sun Yang Bai 《Engineering》 SCIE EI CAS CSCD 2024年第7期194-200,共7页
Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this stu... Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy. 展开更多
关键词 Broadband achromatic focusing Metamaterials Low dispersion materials Visible wavelength MICROLENSES
下载PDF
Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries
13
作者 Aiduo Wu Tianhao Wang +4 位作者 Long Zhang Chen Chen Qiaomin Li Xuanhui Qu Yongchang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1752-1765,共14页
Aqueous zinc-ion batteries(AZIBs)show great potential for applications in grid-scale energy storage,given their intrinsic safety,cost effectiveness,environmental friendliness,and impressive electrochemical performance... Aqueous zinc-ion batteries(AZIBs)show great potential for applications in grid-scale energy storage,given their intrinsic safety,cost effectiveness,environmental friendliness,and impressive electrochemical performance.However,strong electrostatic interactions exist between zinc ions and host materials,and they hinder the development of advanced cathode materials for efficient,rapid,and stable Zn-ion storage.MXenes and their derivatives possess a large interlayer spacing,excellent hydrophilicity,outstanding electronic conductivity,and high redox activity.These materials are considered“rising star”cathode candidates for AZIBs.This comprehensive review discusses recent advances in MXenes as AZIB cathodes from the perspectives of crystal structure,Zn-storage mechanism,surface modification,interlayer engineering,and conductive network design to elucidate the correlations among their composition,structure,and electrochemical performance.This work also outlines the remaining challenges faced by MXenes for aqueous Zn-ion storage,such as the urgent need for improved toxic preparation methods,exploration of potential novel MXene cathodes,and suppression of layered MXene restacking upon cycling,and introduces the prospects of MXene-based cathode materials for high-performance AZIBs. 展开更多
关键词 aqueous zinc-ion batteries MXenes terminal groups interlayer engineering conductive network design
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
14
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
Lithiophilic CoF_(2)@C hollow spheres towards spatial lithium deposition for stable lithium metal batteries
15
作者 Jianxing Wang Shuhao Yao +9 位作者 Runming Tao Xiaolang Liu Jiazhi Geng Chang Hong Huiying Li Guiyun Yu Haifeng Li Xiao-Guang Sun Jianlin Li Jiyuan Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期55-67,I0002,共14页
Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriou... Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriously limit the practical application of LM.Herein,with the aid of a hard template approach,a novel lithiophilic CoF_(2)-carbon hollow sphere(CoF_(2)@C-HS)composite material is successfully prepared via a facile in-situ fluorination and etching strategy.The lithiophilic CoF_(2) acts as nucleation sites to reduce nucleation overpotential as well as induces the spatial Li deposition and the formation of LiFrich solid electrolyte interphase(SEI),and the hollow carbon matrix can enhance the electrical conductivity and offer free space for LM deposition.Theoretical simulations reveal that the synergistic effect of lithiophilic CoF_(2) and hollow carbon matrix homogenizes the electric field distribution and Li~+flux.Benefiting from these advantages,the CoF_(2)@C-HS-modified copper substrate electrode delivers an enhanced Coulombic efficiency(CE)of 93.7%for 280 cycles at 1 mA cm^(-2)and 1 mA h cm^(-2).The symmetrical cell using CoF_(2)@C-HS can stably cycle more than 1800 h with a low voltage hysteresis of 11 mV at a current density of 0.5 MA cm^(-2)and an areal capacity of 0.5 mA h cm^(-2).Moreover,the Li@CoF_(2)@C-HS composite anode enables more than 300 stable cycles at 1 C with a capacity retention of 95%in LiFePO_(4)-based full cell and 110 stable cycles at 1 C in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based highvoltage full cell.This work might shed a new light on designing lithiophilic hosts to spatially confine LM deposition,realizing dendrite-free LM anodes and the practical applications of LM batteries. 展开更多
关键词 Lithium metal anode Spatial deposition Stability NANOCOMPOSITE Lithiophilic CoF_(2)
下载PDF
Construction of a Cu@hollow TS-1 nanoreactor based on a hierarchical full-spectrum solar light utilization strategy for photothermal synergistic artificial photosynthesis
16
作者 Sixian Zhu Qiao Zhao +5 位作者 Hongxia Guo Li Liu Xiao Wang Xiwei Qi Xianguang Meng Wenquan Cui 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期25-36,共12页
The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosyn... The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis. 展开更多
关键词 artificial photosynthesis full spectrum NANOREACTORS photothermal catalysis
下载PDF
Triple the steady-state reaction rate by decorating the In_(2)O_(3)surface with SiO_(x)for CO_(2)hydrogenation
17
作者 Hao Wang Chun Yang +8 位作者 Xiaoyan Yu Mingrui Wang Runze Yang Xiaowa Nie Ben Hang Yin Alex C.K.Yip Chunshan Song Guanghui Zhang Xinwen Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期96-105,I0003,共11页
Indium oxide(In_(2)O_(3)),as a promising candidate for CO_(2)hydrogenation to C_(1) products,often suffers from sintering and activity decline,closely related to the undesirable structural evolution under reaction con... Indium oxide(In_(2)O_(3)),as a promising candidate for CO_(2)hydrogenation to C_(1) products,often suffers from sintering and activity decline,closely related to the undesirable structural evolution under reaction conditions.Based on the comprehension of the dynamic evolution,this study presents an efficient strategy to alleviate the agglomeration of In_(2)O_(3)nanoparticles by the surface decoration with highly dispersed silica species(SiO_(x)).Various structural characterizations combined with density functional theory calculations demonstrated that the sintering resulted from the over-reduction,while the enhanced stability originated from the anchoring effect of highly stable In-OSi bonds,which hinders the substantial formation of metallic In(In^(0))and the subsequent agglomeration.0.6Si/In_(2)O_(3)exhibited CO_(2)conversion rate of10.0 mmol g^(-1)h^(-1)at steady state vs.3.5 mmol g^(-1)h^(-1)on In_(2)O_(3)in CO_(2)hydrogenation.Enhanced steady-state activity was also achieved on Pd-modified catalysts.Compared to the traditional Pd/In_(2)O_(3)catalyst,the methanol production rate of Pd catalyst supported on 0.6Si/In_(2)O_(3)was enhanced by 23%,showing the potential of In_(2)O_(3)modified by SiO_(x)in serving as a platform material.This work provides a promising method to design new In_(2)O_(3)-based catalysts with improved activity and stability in CO_(2)hydrogenation. 展开更多
关键词 CO_(2)hydrogenation In_(2)O_(3)sintering Dynamic structural evolution Surface SiO_(x)modification DFT simulations
下载PDF
Recent advances in electrospun electrode materials for sodium-ion batteries 被引量:10
18
作者 Yao Wang Yukun Liu +6 位作者 Yongchang Liu Qiuyu Shen Chengcheng Chen Fangyuan Qiu Ping Li Lifang Jiao Xuanhui Qu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期225-241,共17页
Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithi... Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithium-ion batteries(LIBs).Nevertheless,the larger size and heavier mass of Na^(+)ion than those of Li^(+)ion often lead to sluggish reaction kinetics and inferior cycling life in SIBs compared to the LIB counterparts.The pursuit of promising electrode materials that can accommodate the rapid and stable Na-ion insertion/extraction is the key to promoting the development of SIBs toward a commercial prosperity.One-dimensional(1 D)nanomaterials demonstrate great prospects in boosting the rate and cycling performances because of their large active surface areas,high endurance for deformation stress,short ions diffusion channels,and oriented electrons transfer paths.Electrospinning,as a versatile synthetic technology,features the advantages of controllable preparation,easy operation,and mass production,has been widely applied to fabricate the 1 D nanostructured electrode materials for SIBs.In this review,we comprehensively summarize the recent advances in the sodium-storage cathode and anode materials prepared by electrospinning,discuss the effects of modulating the spinning parameters on the materials’micro/nano-structures,and elucidate the structure-performance correlations of the tailored electrodes.Finally,the future directions to harvest more breakthroughs in electrospun Na-storage materials are pointed out. 展开更多
关键词 Sodium-ion batteries ELECTROSPINNING Electrode materials NANOSTRUCTURES Structure-performance correlations
下载PDF
New technology for recycling materials from oily cold rolling mill sludge 被引量:3
19
作者 Bo Liu Shen-gen Zhang +3 位作者 Jian-jun Tian De-an Pan Ling Meng Yang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第12期1141-1147,共7页
Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new proces... Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge. 展开更多
关键词 cold rolling mills sludge disposal HYDROMETALLURGY hydrothermal synthesis recycling waste utilization
下载PDF
MXene-based materials for electrochemical energy storage 被引量:49
20
作者 Xu Zhang Zihe Zhang Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期73-85,共13页
Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics... Rechargeable batteries and supercapacitors are widely investigated as the most important electrochemical energy storage devices nowadays due to the booming energy demand for electric vehicles and hand-held electronics. The large surface-area-to-volume ratio and internal surface areas endow two-dimensional(2D) materials with high mobility and high energy density; therefore, 2D materials are very promising candidates for Li ion batteries and supercapacitors with comprehensive investigations. In 2011, a new kind of 2D transition metal carbides, nitrides and carbonitrides, MXene, were successfully obtained from MAX phases. Since then about 20 different kinds of MXene have been prepared. Other precursors besides MAX phases and even other methods such as chemical vapor deposition(CVD) were also applied to prepare MXene, opening new doors for the preparation of new MXene. Their 2D nature and good electronic properties ensure the inherent advantages as electrode materials for electrochemical energy storage. In this review, we summarize the recent progress in the development of MXene with emphasis on the applications to electrochemical energy storage. Also, future perspective and challenges of MXene-based materials are briefly discussed regrading electrochemical energy storage. 展开更多
关键词 MXene2D materials Electrochemical energy storage Batteries Supercapacitors
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部