Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the firs...Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the first half of the twentieth century.In agricultural lands,forests,and bad-lands,stone-capped pedestals have been used as qualitative and semi-quantitative indicators of active,'extreme'erosion.Little work has been reported on using capstone pedestal data for quantifying soil loss.We postulate that three distinct capstone pedestal types may be present in any given location and that a detailed analysis of a pedestal height histogram may be used to recognize their populations.This analysis can subsequently inform if soil loss can be reliably estimated and if so,which of the existing methods using pedestal height data will provide more accurate results.The three proposed capstone pedestal types are:(1)neo-pedestals formed underneath surface stones exposed by(partial)removal of the soil surface cover;(2)endo-pedestals formed underneath stones that were buried in the soil but have been exposed by erosion;and(3)phoenix-pedestals formed underneath stones from collapsed pedestals.In the pedestal height histogram of any given location,a skew to smaller heights may indicate the existence of endo-and/or phoenix-pedestals,which may be revealed as a bi-(or tri)modal distribution when using a smaller bin size.This concept was applied to a case study where soil loss had been monitored for control plots and mulched plots during a 5-year period following wildfire in a eucalypt plantation.We measured pedestal heights and used methods to quantitatively assess soil loss from soil pedestal data in the available literature.Soil pedestal data at the end of the 5-year period under or overestimated soil loss in the control treatment,with results ranging from 60 to 115%of measured soil loss,depending on the method.It is postulated that phoenix-and endo-pedestals may be a driving factor behind the observed discrepancies.We discuss how future research may provide more insight into dominant processes,and how frequency distributions may be used to select the best methods for estimating soil loss from pedestals.展开更多
The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable ...The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory(DFT)calculations by co-doping with Nb and Ta the B-site of the SrFeO_(3-δ)perovskite oxide.The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO_(3-δ)and help electron transfer.In symmetrical cells,such cathode with a SrFe_(0.8)Nb_(0.1)Ta_(0.1)O_(3-δ)(SFNT)detailed formula achieves a low cathode polarization resistance of 0.147Ωcm^(2) at 650℃.Electron spin resonance(ESR)and X-ray photoelectron spectroscopy(XPS)analysis confirm that the co-doping of Nb/Ta in SrFeO_(3-δ)B-site increases the balanced concentration of oxygen vacancies,enhancing the electrochemical performance when compared to 20 mol%Nb single-doped perovskite oxide.The cathode button cell with NiSDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm^(-2)at 650℃.Moreover,the button cell shows durability for 110 h under 0.65 V at 600℃ using wet H_(2) as fuel.展开更多
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne...An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.展开更多
In view of the high cost caused by the 1:1 lifetime verification test of ion thrusters,the lifetime acceleration test should be considered.This work uses the PIC-MCC(Particle-in-Cell MonteCarlo Collision)method to ana...In view of the high cost caused by the 1:1 lifetime verification test of ion thrusters,the lifetime acceleration test should be considered.This work uses the PIC-MCC(Particle-in-Cell MonteCarlo Collision)method to analyze the five failure factors that lead to the failure of the accelerator grid of a 30 cm diameter ion thruster under the working mode of 5 k W.Meanwhile,the acceleration stress levels corresponding to different failure factors are obtained.The results show that background pressure has the highest stress level on the grid's erosion.The accelerator grid aperture's mass sputtering rate under the rated vacuum degree(1×10^(-4)Pa)of 5 k W work mode is 8.78 times that of the baseline vacuum degree(1×10^(-6)Pa),and the mass sputtering rate under worse vacuum degree(5×10^(-3)Pa)is 5.08 times that of 1×10^(-4)Pa.Under the influence of the other four failure factors,namely,the voltage of the accelerator grid,upstream plasma density,the screen grid voltage and mass utilization efficiency,the mass sputtering rates of the accelerator grid hole are 2.32,2.67,1.98 and 2.51 times those of the accelerator grid hole under baseline condition,respectively.The ion sputtering results of two 30 cm diameter ion thrusters(both installed with new grids assembly)after working for 1000 h show that the mass sputtering rate of the accelerator grid hole under vacuum conditions of 5×10^(-3)Pa is 4.54 times that under the condition of 1×10^(-4)Pa,and the comparison error between simulation results and test results of acceleration stress is about 10%.In the subsequent ion thruster lifetime verification,the working vacuum degree can be adjusted according to the acceleration stress level of background pressure,so as to shorten the test time and reduce the test cost.展开更多
Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alte...Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs.展开更多
Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in li...Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in liquid environment.Herein,Mg-9Al-1Fe and Mg-9Al-1Fe-1Gd alloys were designed to highlight the impact of intermetallic on the corrosion behaviour.In-situ AFM with a special electrolyte circulation system and quasi-in-situ SEM observation were used to monitor the corrosion process of the designed alloys.SEM-EDS and TEM-SAED were applied to identify the intermetallic in the designed alloys,and their volta potentials were measured by SKPFM.According to the real-time and real-space in-situ AFM monitor,the corrosion process consisted of dissolution of anodicα-Mg phase,accumulation of corrosion products around cathodic phase and shedding of some fine cathodic phase.Then,the localized corrosion process of Mg alloy was revealed combined with the results of the monitor of corrosion process and Volta potential difference.展开更多
The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precis...The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.展开更多
With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the k...With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the key components of a lithium battery system,the separator plays a critical role as it directly influences the battery performance benchmark(cycling performance and safety).However,traditional polyolefin separators(polypropylene/polyethylene)are unable to meet the demands of highperformance and safer battery systems due to their poor electrolyte compatibility,thermal runaways,and ultimate growth of dendrites.In contrast,membranes fabricated using polybenzimidazole(PBI)exhibit excellent electrolyte wettability and outstanding thermal dimensional stability,thus holding great potential as separators for high-performance and high-safety batteries.In this paper,we present a comprehensive review of the general requirements for separators,synthesis technology for separators,and research trends focusing PBI membranes in lithium batteries to alleviate the current commercial challenges faced by conventional polyolefin separators.In addition,we discuss the future development direction for PBI battery separators by considering various factors such as production cost,ecological footprint,preparation technology,and battery component compatibility.By exploring these perspectives,we aim to promote the continued application and exploration of PBI-based materials to advance lithium battery technology.展开更多
Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2)reduction reaction and understanding the structure-property relationship.Herei...Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2)reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N2-bidentate(note that N2-bidentate site=N^N-bidentate site;N2¹dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N2-bidentate site,a Cu SAC with isolated undercoordinated Cu-N2 sites(Cu1.0/N2-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N2-GDY exhibits the highest Faradaic efficiency(FE)of 80.6%for CH4 in electrocatalytic reduction of CO_(2)at-0.96 V vs.RHE,and the partial current density of CH4 is 160 mA cm^(-2).The selectivity for CH4 is maintained above 70%when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N2-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N2 sites are more favorable in generating key*COOH and*CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N2 sites toward efficient electrocatalysis.展开更多
O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrolla...O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries.展开更多
In this study,we have explored the use of water as a non-solvent for tuning the microstructure of poly-benzimidazole(PBI)membranes,which are potential separators for lithium metal batteries(LMBs).The traditional metho...In this study,we have explored the use of water as a non-solvent for tuning the microstructure of poly-benzimidazole(PBI)membranes,which are potential separators for lithium metal batteries(LMBs).The traditional method for membrane synthesis called nonsolvent-induced phase separation(NIPS),usually relies on hazardous and costly organic non-solvents.By dissolving sodium chloride(Nacl)in water,we could adjust the water ionic potency and the exchange speed of the non-solvent with the DMAC solution to change the micropore structure of the PBI membrane.With increasing Nacl concentration,the micro-pores in the PBI membrane transitioned from finger-like to sponge-like morphology.Compared to com-mercial separators like the Celgard separator,the PBI membrane with sponge-like micropores exhibited better regulation of lithium deposition and improved Li^(+) transportation capability due to its good wetta-bility with the electrolyte.Consequently,the PBI membrane-based Li/Li symmetric cell and Li/LiFePO_(4) full cell demonstrated superior performance compared to the Celgard-based ones.This research proposes an eco-friendly and scalable synthetic approach for fabricating commercial separators for LMBs,addressing the issue of lithium dendrite growth and improving overall battery safety and performance.展开更多
In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelect...Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelectrocatalysts have been developed and optimized to achieve efficient solar hydrogen production.Among various optimization strategies,the regulation of spin polarization can tailor the intrinsic optoelectronic properties for retarding charge recombination and enhancing surface reactions,thus improving the solar-to-hydrogen(STH)efficiency.This review presents recent advances in the regulation of spin polarization to enhance spin polarized-dependent solar hydrogen evolution activity.Specifically,spin polarization manipulation strategies of several typical photocatalysts/photoelectrocatalysts(e.g.,metallic oxides,metallic sulfides,non-metallic semiconductors,ferroelectric materials,and chiral molecules)are described.In the end,the critical challenges and perspectives of spin polarization regulation towards future solar energy conversion are briefly provided.展开更多
Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly un...Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.展开更多
Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottl...Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems.展开更多
Objective:Organoids are a powerful tool with broad application prospects in biomedicine.Notably,they provide alternatives to animal models for testing potential drugs before clinical trials.However,the number of passa...Objective:Organoids are a powerful tool with broad application prospects in biomedicine.Notably,they provide alternatives to animal models for testing potential drugs before clinical trials.However,the number of passages for which organoids maintain cellular vitality ex vivo remains unclear.Methods:Herein,we constructed 55 gastric organoids from 35 individuals,serially passaged the organoids,and captured microscopic images for phenotypic evaluation.Senescence-associatedβ-galactosidase(SA-β-Gal),cell diameter in suspension,and gene expression reflecting cell cycle regulation were examined.The YOLOv3 object detection algorithm integrated with a convolutional block attention module(CBAM)was used to evaluate organoid vitality.Results:SA-β-Gal staining intensity;single-cell diameter;and expression of p15,p16,p21,CCNA2,CCNE2,and LMNB1 reflected the progression of aging in organoids during passaging.The CBAM-YOLOv3 algorithm precisely evaluated aging organoids on the basis of organoid average diameter,organoid number,and number×diameter,and the findings positively correlated with SA-β-Gal staining and single-cell diameter.Organoids derived from normal gastric mucosa had limited passaging ability(passages 1–5),before aging,whereas tumor organoids showed unlimited passaging potential for more than 45 passages(511 days)without showing clear senescence.Conclusions:Given the lack of indicators for evaluating organoid growth status,we established a reliable approach for integrated analysis of phenotypic parameters that uses an artificial intelligence algorithm to indicate organoid vitality.This method enables precise evaluation of organoid status in biomedical studies and monitoring of living biobanks.展开更多
Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.U...Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design.展开更多
The solid electrolyte interphase(SEI)with strong mechanical strength and high ion conductivity is highly desired for Li metal batteries,especially for harsh anode-free batteries.Herein,we report a pragmatic approach t...The solid electrolyte interphase(SEI)with strong mechanical strength and high ion conductivity is highly desired for Li metal batteries,especially for harsh anode-free batteries.Herein,we report a pragmatic approach to the in-situ construction of high-quality SEI by applying synergistic additives of Li NO_(3)and ethylene sulfite(ES)in the electrolyte.The obtained SEI exhibits a high average Young’s modulus(9.02GPa)and exchanging current density(4.59 mA cm^(-2)),which are 3.0 and 1.2 times as large as those using the sole additive of LiNO_(3),respectively.With this improved SEI,Li-dendrite growth and side reactions are effectively suppressed,leading to an ultra-high Coulombic efficiency(CE)of 99.7%for Li plating and stripping.When applying this improved electrolyte in full cells,it achieves a high capacity retention of 89.7%for over 150 cycles in a LiFePO_(4)||Li battery(~12 mg cm^(-2)cathode,50μm Li)and of 44.5%over 100 cycles in a LiFePO_(4)||Cu anode-free battery.展开更多
Close-space sublimation(CSS)has been demonstrated as an alternative vacuum deposition technique for fabricating organic light-emitting diodes(OLEDs).CSS utilizes a planar donor plate pre-coated with organic thin films...Close-space sublimation(CSS)has been demonstrated as an alternative vacuum deposition technique for fabricating organic light-emitting diodes(OLEDs).CSS utilizes a planar donor plate pre-coated with organic thin films as an area source to rapidly transfer the donor film to a device substrate at temperatures below 200℃.CSS is also conformal and capable of depositing on odd-shaped substrates using flexible donor media.The evaporation behaviors of organic donor films under CSS were fully characterized using model OLED materials and CSS-deposited films exhibited comparable device performances in an OLED stack to films deposited by conventional point sources.The low temperature and conformal nature of CSS,along with its high material utilization and short process time,make it a promising method for fabricating flexible OLED displays.展开更多
基金supported by CESAM by FCT/MCTES (UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020)and MED (UIDB/05183/2020)to FCT/MEC through national fundsthe co-funding by the FEDER,within the PT2020 Partnership Agreement and Compete 2020,and projects FIRECNUTS (PTDC/AGRCFL/104559/2008)+2 种基金CASCADE (ENV.2011.2.1.4-2/283068),which is funded by the European Unionthe FCT CEEC funding of Frank G.A.Verheijen (CEECIND/02509/2018),Sergio A.Prats (CEECIND/01473/2020),funded by national funds (OE)the SOILCOMBAT project (PTDC/EAM-AMB/0474/2020)through the Portuguese Foundation for Science and Technology (FCT/MCTES).
文摘Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the first half of the twentieth century.In agricultural lands,forests,and bad-lands,stone-capped pedestals have been used as qualitative and semi-quantitative indicators of active,'extreme'erosion.Little work has been reported on using capstone pedestal data for quantifying soil loss.We postulate that three distinct capstone pedestal types may be present in any given location and that a detailed analysis of a pedestal height histogram may be used to recognize their populations.This analysis can subsequently inform if soil loss can be reliably estimated and if so,which of the existing methods using pedestal height data will provide more accurate results.The three proposed capstone pedestal types are:(1)neo-pedestals formed underneath surface stones exposed by(partial)removal of the soil surface cover;(2)endo-pedestals formed underneath stones that were buried in the soil but have been exposed by erosion;and(3)phoenix-pedestals formed underneath stones from collapsed pedestals.In the pedestal height histogram of any given location,a skew to smaller heights may indicate the existence of endo-and/or phoenix-pedestals,which may be revealed as a bi-(or tri)modal distribution when using a smaller bin size.This concept was applied to a case study where soil loss had been monitored for control plots and mulched plots during a 5-year period following wildfire in a eucalypt plantation.We measured pedestal heights and used methods to quantitatively assess soil loss from soil pedestal data in the available literature.Soil pedestal data at the end of the 5-year period under or overestimated soil loss in the control treatment,with results ranging from 60 to 115%of measured soil loss,depending on the method.It is postulated that phoenix-and endo-pedestals may be a driving factor behind the observed discrepancies.We discuss how future research may provide more insight into dominant processes,and how frequency distributions may be used to select the best methods for estimating soil loss from pedestals.
基金supported by the National Natural Science Foundation of China (51702039)。
文摘The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory(DFT)calculations by co-doping with Nb and Ta the B-site of the SrFeO_(3-δ)perovskite oxide.The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO_(3-δ)and help electron transfer.In symmetrical cells,such cathode with a SrFe_(0.8)Nb_(0.1)Ta_(0.1)O_(3-δ)(SFNT)detailed formula achieves a low cathode polarization resistance of 0.147Ωcm^(2) at 650℃.Electron spin resonance(ESR)and X-ray photoelectron spectroscopy(XPS)analysis confirm that the co-doping of Nb/Ta in SrFeO_(3-δ)B-site increases the balanced concentration of oxygen vacancies,enhancing the electrochemical performance when compared to 20 mol%Nb single-doped perovskite oxide.The cathode button cell with NiSDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm^(-2)at 650℃.Moreover,the button cell shows durability for 110 h under 0.65 V at 600℃ using wet H_(2) as fuel.
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
文摘An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.
基金supported by Key Laboratory Funds for the Science and Technology on Vacuum Technology and Physics Laboratory,Lanzhou Institute of Physics(Nos.HTKJ2022KL510003 and 6142207210303)Independent project of Hangzhou Institute for Advanced Study(No.2022ZZ01009)Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(No.KJZD-K202101506)。
文摘In view of the high cost caused by the 1:1 lifetime verification test of ion thrusters,the lifetime acceleration test should be considered.This work uses the PIC-MCC(Particle-in-Cell MonteCarlo Collision)method to analyze the five failure factors that lead to the failure of the accelerator grid of a 30 cm diameter ion thruster under the working mode of 5 k W.Meanwhile,the acceleration stress levels corresponding to different failure factors are obtained.The results show that background pressure has the highest stress level on the grid's erosion.The accelerator grid aperture's mass sputtering rate under the rated vacuum degree(1×10^(-4)Pa)of 5 k W work mode is 8.78 times that of the baseline vacuum degree(1×10^(-6)Pa),and the mass sputtering rate under worse vacuum degree(5×10^(-3)Pa)is 5.08 times that of 1×10^(-4)Pa.Under the influence of the other four failure factors,namely,the voltage of the accelerator grid,upstream plasma density,the screen grid voltage and mass utilization efficiency,the mass sputtering rates of the accelerator grid hole are 2.32,2.67,1.98 and 2.51 times those of the accelerator grid hole under baseline condition,respectively.The ion sputtering results of two 30 cm diameter ion thrusters(both installed with new grids assembly)after working for 1000 h show that the mass sputtering rate of the accelerator grid hole under vacuum conditions of 5×10^(-3)Pa is 4.54 times that under the condition of 1×10^(-4)Pa,and the comparison error between simulation results and test results of acceleration stress is about 10%.In the subsequent ion thruster lifetime verification,the working vacuum degree can be adjusted according to the acceleration stress level of background pressure,so as to shorten the test time and reduce the test cost.
基金supported by projects from the National Natural Science Foundation of China(U20A20145)the Open Project of State Key Laboratory of Environment-friendly Energy Materials(20kfhg07)+6 种基金Distinguished Young Foundation of Sichuan Province(2020JDJQ0027)2020 Strategic Cooperation Project between Sichuan University and the Zigong Municipal People's Government(2020CDZG-09)State Key Laboratory of Polymer Materials Engineering(sklpme2020-3-02)Sichuan Provincial Department of Science and Technology(2020YFG0471,2020YFG0022,2022YFG0124)Sichuan Province Science and Technology Achievement Transfer and Transformation Project(21ZHSF0111)Sichuan University Postdoctoral Interdisciplinary Innovation Fund(2021SCU12084)Start-up funding of Chemistry and Chemical Engineering Guangdong Laboratory(2122010)。
文摘Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs.
基金support by the National Natural Science Foundation of China(51961026)the Interdisciplinary Innovation Fund of Nanchang University(Project No.2019-9166-27060003).
文摘Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in liquid environment.Herein,Mg-9Al-1Fe and Mg-9Al-1Fe-1Gd alloys were designed to highlight the impact of intermetallic on the corrosion behaviour.In-situ AFM with a special electrolyte circulation system and quasi-in-situ SEM observation were used to monitor the corrosion process of the designed alloys.SEM-EDS and TEM-SAED were applied to identify the intermetallic in the designed alloys,and their volta potentials were measured by SKPFM.According to the real-time and real-space in-situ AFM monitor,the corrosion process consisted of dissolution of anodicα-Mg phase,accumulation of corrosion products around cathodic phase and shedding of some fine cathodic phase.Then,the localized corrosion process of Mg alloy was revealed combined with the results of the monitor of corrosion process and Volta potential difference.
基金supported by the National Key Research and Development Program of China(2022YFC2203700).
文摘The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.
基金supported by the Natural Science Foundation of China(22105129)the Guangdong Basic and Applied Basic Research Foundation(2022A1515011048)the Science and Technology Innovation Commission of Shenzhen(JCYJ20200109105618137)。
文摘With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the key components of a lithium battery system,the separator plays a critical role as it directly influences the battery performance benchmark(cycling performance and safety).However,traditional polyolefin separators(polypropylene/polyethylene)are unable to meet the demands of highperformance and safer battery systems due to their poor electrolyte compatibility,thermal runaways,and ultimate growth of dendrites.In contrast,membranes fabricated using polybenzimidazole(PBI)exhibit excellent electrolyte wettability and outstanding thermal dimensional stability,thus holding great potential as separators for high-performance and high-safety batteries.In this paper,we present a comprehensive review of the general requirements for separators,synthesis technology for separators,and research trends focusing PBI membranes in lithium batteries to alleviate the current commercial challenges faced by conventional polyolefin separators.In addition,we discuss the future development direction for PBI battery separators by considering various factors such as production cost,ecological footprint,preparation technology,and battery component compatibility.By exploring these perspectives,we aim to promote the continued application and exploration of PBI-based materials to advance lithium battery technology.
文摘Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2)reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N2-bidentate(note that N2-bidentate site=N^N-bidentate site;N2¹dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N2-bidentate site,a Cu SAC with isolated undercoordinated Cu-N2 sites(Cu1.0/N2-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N2-GDY exhibits the highest Faradaic efficiency(FE)of 80.6%for CH4 in electrocatalytic reduction of CO_(2)at-0.96 V vs.RHE,and the partial current density of CH4 is 160 mA cm^(-2).The selectivity for CH4 is maintained above 70%when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N2-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N2 sites are more favorable in generating key*COOH and*CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N2 sites toward efficient electrocatalysis.
基金supported by the Science and Technology Program of Suzhou(ST202304)the National Natural Science Foundation of China(12275189)+1 种基金the Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 project。
文摘O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries.
基金supported by the funding from the Natural Science Foundation of China (22105129)the Guangdong Basic and Applied Basic Research Foundation (2022A1515011048,2022A1515010670)the Science and Technology Innovation Commission of Shenzhen (JCYJ20200109105618137,20200812112006001)
文摘In this study,we have explored the use of water as a non-solvent for tuning the microstructure of poly-benzimidazole(PBI)membranes,which are potential separators for lithium metal batteries(LMBs).The traditional method for membrane synthesis called nonsolvent-induced phase separation(NIPS),usually relies on hazardous and costly organic non-solvents.By dissolving sodium chloride(Nacl)in water,we could adjust the water ionic potency and the exchange speed of the non-solvent with the DMAC solution to change the micropore structure of the PBI membrane.With increasing Nacl concentration,the micro-pores in the PBI membrane transitioned from finger-like to sponge-like morphology.Compared to com-mercial separators like the Celgard separator,the PBI membrane with sponge-like micropores exhibited better regulation of lithium deposition and improved Li^(+) transportation capability due to its good wetta-bility with the electrolyte.Consequently,the PBI membrane-based Li/Li symmetric cell and Li/LiFePO_(4) full cell demonstrated superior performance compared to the Celgard-based ones.This research proposes an eco-friendly and scalable synthetic approach for fabricating commercial separators for LMBs,addressing the issue of lithium dendrite growth and improving overall battery safety and performance.
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金support from the National Natural Science Foundation of China(No.22105031)National Key Research and Development Program of China(No.2019YFE0121600)+2 种基金Sichuan Science and Technology Program(No.2021YFH0054,2023JDGD0011)Fundamental Research Funds for the Central Universities(ZYGX2020J028)Z.M.W.acknowledges the National Key Research and Development Program of China(No.2019YFB2203400)and the“111 Project”(No.B20030).
文摘Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelectrocatalysts have been developed and optimized to achieve efficient solar hydrogen production.Among various optimization strategies,the regulation of spin polarization can tailor the intrinsic optoelectronic properties for retarding charge recombination and enhancing surface reactions,thus improving the solar-to-hydrogen(STH)efficiency.This review presents recent advances in the regulation of spin polarization to enhance spin polarized-dependent solar hydrogen evolution activity.Specifically,spin polarization manipulation strategies of several typical photocatalysts/photoelectrocatalysts(e.g.,metallic oxides,metallic sulfides,non-metallic semiconductors,ferroelectric materials,and chiral molecules)are described.In the end,the critical challenges and perspectives of spin polarization regulation towards future solar energy conversion are briefly provided.
基金supported by the National Natural Science Foundation of China(82141112)Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-14)C.W.and the Clinical Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(JYLJ202112).
文摘Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.
基金the National Natural Science Foundation of China (Grant No. 61974093)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515012479)+2 种基金Guangdong Provincial Department of Science and Technology (Grant No. 2020A1515110883)the Science and Technology Innovation Commission of Shenzhen (Grant Nos. RCYX20200714114524157 and JCYJ20220818100206013)NTUT-SZU Joint Research Program (Grant No. NTUT-SZU-112-02)
文摘Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.82072602 and 82173222)the Science and Technology Commission of Shanghai Municipality(Grant Nos.20DZ2201900 and 18411953100)+1 种基金the Innovation Foundation of Translational Medicine of Shanghai Jiaotong University School of Medicine(Grant No.TM202001)the Collaborative Innovation Center for Clinical and Translational Science of the Chinese Ministry of Education&Shanghai(Grant No.CCTS-2022202)。
文摘Objective:Organoids are a powerful tool with broad application prospects in biomedicine.Notably,they provide alternatives to animal models for testing potential drugs before clinical trials.However,the number of passages for which organoids maintain cellular vitality ex vivo remains unclear.Methods:Herein,we constructed 55 gastric organoids from 35 individuals,serially passaged the organoids,and captured microscopic images for phenotypic evaluation.Senescence-associatedβ-galactosidase(SA-β-Gal),cell diameter in suspension,and gene expression reflecting cell cycle regulation were examined.The YOLOv3 object detection algorithm integrated with a convolutional block attention module(CBAM)was used to evaluate organoid vitality.Results:SA-β-Gal staining intensity;single-cell diameter;and expression of p15,p16,p21,CCNA2,CCNE2,and LMNB1 reflected the progression of aging in organoids during passaging.The CBAM-YOLOv3 algorithm precisely evaluated aging organoids on the basis of organoid average diameter,organoid number,and number×diameter,and the findings positively correlated with SA-β-Gal staining and single-cell diameter.Organoids derived from normal gastric mucosa had limited passaging ability(passages 1–5),before aging,whereas tumor organoids showed unlimited passaging potential for more than 45 passages(511 days)without showing clear senescence.Conclusions:Given the lack of indicators for evaluating organoid growth status,we established a reliable approach for integrated analysis of phenotypic parameters that uses an artificial intelligence algorithm to indicate organoid vitality.This method enables precise evaluation of organoid status in biomedical studies and monitoring of living biobanks.
基金supported by the National Natural Science Foundation of China (22379121)Shenzhen Foundation Research Fund granted by the Shenzhen Science and Technology Innovation Committee (JCYJ20220530112812028)+1 种基金Fundamental Research Funds for the Central Universities (G2022KY0606)Zhejiang Province Key Laboratory of Flexible Electronics Open Fund (No. 2023FE005)。
文摘Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design.
基金supported by the National Natural Science Foundation of China(21975207,52202303)the Westlake Education Foundation,and the Zhejiang Provincial Natural Science Foundation of China(LQ21B030006)。
文摘The solid electrolyte interphase(SEI)with strong mechanical strength and high ion conductivity is highly desired for Li metal batteries,especially for harsh anode-free batteries.Herein,we report a pragmatic approach to the in-situ construction of high-quality SEI by applying synergistic additives of Li NO_(3)and ethylene sulfite(ES)in the electrolyte.The obtained SEI exhibits a high average Young’s modulus(9.02GPa)and exchanging current density(4.59 mA cm^(-2)),which are 3.0 and 1.2 times as large as those using the sole additive of LiNO_(3),respectively.With this improved SEI,Li-dendrite growth and side reactions are effectively suppressed,leading to an ultra-high Coulombic efficiency(CE)of 99.7%for Li plating and stripping.When applying this improved electrolyte in full cells,it achieves a high capacity retention of 89.7%for over 150 cycles in a LiFePO_(4)||Li battery(~12 mg cm^(-2)cathode,50μm Li)and of 44.5%over 100 cycles in a LiFePO_(4)||Cu anode-free battery.
基金financially supported by the General Research Fund(16309918)from the Research Grant Council,Hong Kongfunding from the Institute for Advanced Study of the Hong Kong University of Science and Technology。
文摘Close-space sublimation(CSS)has been demonstrated as an alternative vacuum deposition technique for fabricating organic light-emitting diodes(OLEDs).CSS utilizes a planar donor plate pre-coated with organic thin films as an area source to rapidly transfer the donor film to a device substrate at temperatures below 200℃.CSS is also conformal and capable of depositing on odd-shaped substrates using flexible donor media.The evaporation behaviors of organic donor films under CSS were fully characterized using model OLED materials and CSS-deposited films exhibited comparable device performances in an OLED stack to films deposited by conventional point sources.The low temperature and conformal nature of CSS,along with its high material utilization and short process time,make it a promising method for fabricating flexible OLED displays.