期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deep reinforcement learning for the optimized operation of large amounts of distributed renewable energy assets 被引量:1
1
作者 Jan Martin Specht Reinhard Madlener 《Energy and AI》 2023年第1期106-117,共12页
This study utilizes machine learning and,more specifically,reinforcement learning(RL)to allow for an optimized,real-time operation of large numbers of decentral flexible assets on private household scale in the electr... This study utilizes machine learning and,more specifically,reinforcement learning(RL)to allow for an optimized,real-time operation of large numbers of decentral flexible assets on private household scale in the electricity domain.The potential and current obstacles of RL are demonstrated and a guide for interested practitioners is provided on how to tackle similar tasks without advanced skills in neural network programming.For the application in the energy domain it is demonstrated that state-of-the-art RL algorithms can be trained to control potentially millions of small-scale assets in private households.In detail,the applied RL algorithm outperforms common heuristic algorithms and only falls slightly short of the results provided by linear optimization,but at less than a thousandth of the simulation time.Thus,RL paves the way for aggregators of flexible energy assets to optimize profit over multiple use cases in a smart energy grid and thus also provide valuable grid services and a more sustainable operation of private energy assets. 展开更多
关键词 Reinforcement learning Virtual power plant Aggregation of energy Value stacking Flexibility of decentral energy assets
原文传递
Understanding electricity prices beyond the merit order principle using explainable AI
2
作者 Julius Trebbien Leonardo Rydin Gorjao +2 位作者 Aaron Praktiknjo Benjamin Schafer Dirk Witthaut 《Energy and AI》 2023年第3期149-159,共11页
Electricity prices in liberalized markets are determined by the supply and demand for electric power,which are in turn driven by various external influences that vary strongly in time.In perfect competition,the merit ... Electricity prices in liberalized markets are determined by the supply and demand for electric power,which are in turn driven by various external influences that vary strongly in time.In perfect competition,the merit order principle describes that dispatchable power plants enter the market in the order of their marginal costs to meet the residual load,i.e.the difference of load and renewable generation.Various market models are based on this principle when attempting to predict electricity prices,yet the principle is fraught with assumptions and simplifications and thus is limited in accurately predicting prices.In this article,we present an explainable machine learning model for the electricity prices on the German day-ahead market which foregoes of the aforementioned assumptions of the merit order principle.Our model is designed for an ex-post analysis of prices and builds on various external features.Using SHapley Additive exPlanation(SHAP)values we disentangle the role of the different features and quantify their importance from empiric data,and therein circumvent the limitations inherent to the merit order principle.We show that load,wind and solar generation are the central external features driving prices,as expected,wherein wind generation affects prices more than solar generation.Similarly,fuel prices also highly affect prices,and do so in a nontrivial manner.Moreover,large generation ramps are correlated with high prices due to the limited flexibility of nuclear and lignite plants.Overall,we offer a model that describes the influence of the main drivers of electricity prices in Germany,taking us a step beyond the limited merit order principle in explaining the drivers of electricity prices and their relation to each other. 展开更多
关键词 Electricity prices Merit order principle Explainable artificial intelligence Machine learning Fuel prices Energy market
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部