Three monogenetic cones in the Baossi–Warack area, Ngaoundéré, Adamawa Plateau forming part of the Cameroon Volcanic Line(CVL) are documented in this study. Basaltic lavas(<1 km^3) scattered around these...Three monogenetic cones in the Baossi–Warack area, Ngaoundéré, Adamawa Plateau forming part of the Cameroon Volcanic Line(CVL) are documented in this study. Basaltic lavas(<1 km^3) scattered around these vents and restricted volcaniclastic deposits were emplaced by Hawaiian and mild strombolian style eruptions. The lavas are porphyritic, mainly composed of olivine(chrysolite) and clinopyroxene(diopside and augite) phenocrysts and plagioclase(andesine) microphenocrysts. Accessory minerals include titano-magnetite and titano-hematite, nepheline,apatite and amphibole xenocrysts. Sanidine occurs in some samples and sodi-potassic albite in others. Some olivines and clinopyroxenes exhibit resorbed margins and thin reaction rims while plagioclase displays oscillatory zoning, and sieved textures as a result of magma mixing. Whole-rock geochemistry data indicates that the lavas are silica-undersaturated, composed of basanites and basalts, showing little compositional variations(SiO_2: 39.20 wt.%–48.01 wt.%,MgO: 5.29 wt.%–9.70 wt.%). Trace elements patterns of these lavas suggest they are enriched in LILE including Pb,probably due to crustal contamination. REE patterns suggest cogenetic magmas below Baossi 1 and Baossi 2 volcanoes,and distinct sources below Warack volcano and nearby lavas.The lavas studied show affinity to high-μ(HIMU), enriched type Ⅰ(EM1) and Oceanic Island Basalt(OIB)-like mantle signatures and thus indicate a heterogeneous mantle source underneath the vents as noted at other monogenetic and polygenetic volcanoes along the CVL. Primary melts derived from low degrees of partial melting(0.5%–2%) and encountered low rates of fractionation, and crustal contamination coupled with magma mixing. These melts evolved independently through structural weaknesses in the basement.展开更多
Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and l...Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and lahar deposits around the flanks of the volcano.This study aims to assess the evolution of Mount Cameroon volcanism through its eruptive history via interpretation of mineralogical,whole rock geochemical and Pb,Sr,Nd isotope data generated from historic and recent lava flows.In this study,samples were collected from the 1959,1982,1999 and 2000 eruptions and from several historic eruption sites with unknown eruption dates.Evaluation of major and trace element data demonstrates that Mount Cameroon is geotectonically associated with within-plate Ocean Island Basalt Settings.More than 90%of the studied historic lavas(n=29)classify as tephrites and basanites whereas the modern lavas(n=38)are predominantly trachybasalts,demonstrating evolution from primitive to evolved lavas over time typically in response to fractional crystallization.Petrographically,the lavas are porphyritic with main mineral phases being olivine,clinopyroxene,plagioclase feldspars and Fe-Ti-Cr oxides.The 1982 lavas are predominantly aphyric and dominated by lath-shaped flow-aligned plagioclase in the groundmass.Olivine chemistry shows variable forsterite compositions from Fo60-89.Clinopyroxenes vary from diopside through augite to titanaugite with chemical composition ranges from Wo45En32Fs7 to Wo51En47Fs17.Plagioclase feldspars vary from labradorite(An567 O)to bytownite(An80-87).For the Fe-Ti-Cr oxides,calculated ulvospinel component shows a wide variation from ulv38-87.CIPW-normative classification on the Di-Ol-Hy-Qz-Ne system shows that all Mount Cameroon lavas are nepheline-normative(Ne ranges from4.20 wt.%to 11.45 wt.%).Radiogenic isotope data demonstrate that Mount Cameroon lavas are HIMU(or high μ=238U/204Pb),characterized by 206Pb/204Pb=20.19-20.46,207Pb/204Pb=15.63-15.69,208Pb/204Pb=40.01-40.30,87Sr/86Sr=0.70322-0.70339(εsr=-21.37 to-18.96)and 143 Nd/144 Nd=0.51276-0.51285(εNd=+2.29 to+4.05).The historic lavas show stronger HIMU signature relative to the modern lavas,suggesting evolution towards less HIMU signatures over time.This study has revealed that Mount Cameroon volcanism has evolved from primitive magmas characterized by stronger HIMU signatures with high 206/204Pb and 208/204Pb isotopes,low SiO2 and high Mg,Ni,Cr content towards lower HIMU signatures with relatively higher SiO2,lower Mg,Cr and Ni compositions.The geochemical and isotopic changes,which account for the evolution of magmatism on Mount Cameroon occur over long periods of time because all the modern lavas erupted within the last 100 years are isotopically homogeneous,with very limited variation in SiO2 compositions.展开更多
In this contribution,detailed field descriptions together with petrographic and bulk-rock major,trace and rare earth elements(REE)data are used to constrain the origin and geodynamic setting of the mafic magmatic encl...In this contribution,detailed field descriptions together with petrographic and bulk-rock major,trace and rare earth elements(REE)data are used to constrain the origin and geodynamic setting of the mafic magmatic enclaves(MMEs)recently discovered within the Pan-African Ngaoundal pluton,Adamawa area,central Cameroon.The investigated MMEs are dark-colored with chilled margins,and display medium to coarse-grain igneous textures.The mineral assemblage is either dominated by K-feldspar and carbonate(group Ⅰ),or by amphibole and plagioclase(group Ⅱ),though the overall mineral phases made of amphibole,plagioclase,K-feldspar,and biotite are similar to that of their host syenite but in different proportions.The MMEs in Ngaoundal area are foid-gabbro in composition with SiO_(2) contents ranging between 41.52% and 43.74% and are contiguous with their host granitoids of intermediate composition(SiO_(2)=57.52% to 58.98%).The host granitoid rocks are metaluminous,and belong to the shoshonitic series.Petrographic and geochemical data have revealed that the Ngaoundal MMEs derived from rapid cooling of hot injected lithospheric mantle-derived magma within cooler host granitoids magma and were emplaced in the intraplate geodynamic setting.展开更多
Compared to large-scale infrequent disasters like volcanic eruptions, earthquakes, and gas explosions from volcanic (maar) lakes, most small-scale everyday disasters (e.g., landslides and floods) are not well reported...Compared to large-scale infrequent disasters like volcanic eruptions, earthquakes, and gas explosions from volcanic (maar) lakes, most small-scale everyday disasters (e.g., landslides and floods) are not well reported and documented in Cameroon, despite the fact that cumulatively, they cause the most casualties and distress to the people affected. This paper documents a debris flow that occurred on the 1st of August 2012 in Kakpenyi, a quarter found in Tinta, one of the villages of Akwaya Sub Division in Manyu Division of the Southwest Region of Cameroon. The event started from the western slope (06°14.350'N & 09°31.475'E) of a hogback in the settlement, and mobilized ca 3.47 × 106 m3 of material over a ca 1 km distance. The material was made up of a chaotic mix of mud, rock fragments, boulders, twigs, tree logs, trunks, and roots. Its distal part dammed river Kakpenyi forming a 10 m deep lake which eventually safely emptied itself. No casualties were recorded but 20 people got injured and 21 people lost farmland. The debris flow was not caused by earthquake shaking. Instead, inappropriate land use acted as a remote cause to predispose the steep slope, while heavy rainfall triggered the flow. Verbal reports talk of a similar event 40 years ago in the area. This shows that Kakpenyi is vulnerable to this kind of hazard, requiring that major infrastructural development projects like roads and bridges in the area be preceded by detailed hazard and vulnerability assessments.展开更多
This paper examines the spatial and temporal variability of the mean annual precipitation in the Northern Cameroon on the context of climate change during the time period 1950-2013. The study used homogeneous monthly ...This paper examines the spatial and temporal variability of the mean annual precipitation in the Northern Cameroon on the context of climate change during the time period 1950-2013. The study used homogeneous monthly and annual precipitations database of twenty-five stations located in the Northern Cameroon and Southern Chad Republic. Geostatisticals interpolation methods (Kriging and Inverse Distance Weighting method) associated with Digital Elevation Model were used to establish the spatial distribution of annuals precipitations. The non-parametric Mann- Kendall test and Sen’s slope method were performed to determine respectively trend and magnitude. The result indicates a spatial distribution of precipitation mainly determined by the topography and the geography of the study area. The trend analysis shows a decrease of annual average precipitation across the Northern Cameroon at a rate of ?0.568 mm/year over the time period 1950-2013. The magnitude of decreasing trends ranged between 0.11 and 3.92 mm/year. Statistically significant decreasing trends at the 95% level of confidence were noted at 10% while 5% of stations showed statistically significant increasing. However, 60% of stations indicate a decreasing trend. Monthly analysis of rainfall shows a decreasing trend during June and September while July and August present an increasing trend.展开更多
基金financially supported by the Ministry of Higher Education, Cameroon, through the Special Allocation for the Modernization of Research (SAMR) granted to the first author
文摘Three monogenetic cones in the Baossi–Warack area, Ngaoundéré, Adamawa Plateau forming part of the Cameroon Volcanic Line(CVL) are documented in this study. Basaltic lavas(<1 km^3) scattered around these vents and restricted volcaniclastic deposits were emplaced by Hawaiian and mild strombolian style eruptions. The lavas are porphyritic, mainly composed of olivine(chrysolite) and clinopyroxene(diopside and augite) phenocrysts and plagioclase(andesine) microphenocrysts. Accessory minerals include titano-magnetite and titano-hematite, nepheline,apatite and amphibole xenocrysts. Sanidine occurs in some samples and sodi-potassic albite in others. Some olivines and clinopyroxenes exhibit resorbed margins and thin reaction rims while plagioclase displays oscillatory zoning, and sieved textures as a result of magma mixing. Whole-rock geochemistry data indicates that the lavas are silica-undersaturated, composed of basanites and basalts, showing little compositional variations(SiO_2: 39.20 wt.%–48.01 wt.%,MgO: 5.29 wt.%–9.70 wt.%). Trace elements patterns of these lavas suggest they are enriched in LILE including Pb,probably due to crustal contamination. REE patterns suggest cogenetic magmas below Baossi 1 and Baossi 2 volcanoes,and distinct sources below Warack volcano and nearby lavas.The lavas studied show affinity to high-μ(HIMU), enriched type Ⅰ(EM1) and Oceanic Island Basalt(OIB)-like mantle signatures and thus indicate a heterogeneous mantle source underneath the vents as noted at other monogenetic and polygenetic volcanoes along the CVL. Primary melts derived from low degrees of partial melting(0.5%–2%) and encountered low rates of fractionation, and crustal contamination coupled with magma mixing. These melts evolved independently through structural weaknesses in the basement.
文摘Mount Cameroon volcano has erupted several times in the 20 th Century with documented eruptions in 1909,1922,1954,1959,1982,1999 and 2000.Evidence of historic volcanism is represented by several older lava flows and lahar deposits around the flanks of the volcano.This study aims to assess the evolution of Mount Cameroon volcanism through its eruptive history via interpretation of mineralogical,whole rock geochemical and Pb,Sr,Nd isotope data generated from historic and recent lava flows.In this study,samples were collected from the 1959,1982,1999 and 2000 eruptions and from several historic eruption sites with unknown eruption dates.Evaluation of major and trace element data demonstrates that Mount Cameroon is geotectonically associated with within-plate Ocean Island Basalt Settings.More than 90%of the studied historic lavas(n=29)classify as tephrites and basanites whereas the modern lavas(n=38)are predominantly trachybasalts,demonstrating evolution from primitive to evolved lavas over time typically in response to fractional crystallization.Petrographically,the lavas are porphyritic with main mineral phases being olivine,clinopyroxene,plagioclase feldspars and Fe-Ti-Cr oxides.The 1982 lavas are predominantly aphyric and dominated by lath-shaped flow-aligned plagioclase in the groundmass.Olivine chemistry shows variable forsterite compositions from Fo60-89.Clinopyroxenes vary from diopside through augite to titanaugite with chemical composition ranges from Wo45En32Fs7 to Wo51En47Fs17.Plagioclase feldspars vary from labradorite(An567 O)to bytownite(An80-87).For the Fe-Ti-Cr oxides,calculated ulvospinel component shows a wide variation from ulv38-87.CIPW-normative classification on the Di-Ol-Hy-Qz-Ne system shows that all Mount Cameroon lavas are nepheline-normative(Ne ranges from4.20 wt.%to 11.45 wt.%).Radiogenic isotope data demonstrate that Mount Cameroon lavas are HIMU(or high μ=238U/204Pb),characterized by 206Pb/204Pb=20.19-20.46,207Pb/204Pb=15.63-15.69,208Pb/204Pb=40.01-40.30,87Sr/86Sr=0.70322-0.70339(εsr=-21.37 to-18.96)and 143 Nd/144 Nd=0.51276-0.51285(εNd=+2.29 to+4.05).The historic lavas show stronger HIMU signature relative to the modern lavas,suggesting evolution towards less HIMU signatures over time.This study has revealed that Mount Cameroon volcanism has evolved from primitive magmas characterized by stronger HIMU signatures with high 206/204Pb and 208/204Pb isotopes,low SiO2 and high Mg,Ni,Cr content towards lower HIMU signatures with relatively higher SiO2,lower Mg,Cr and Ni compositions.The geochemical and isotopic changes,which account for the evolution of magmatism on Mount Cameroon occur over long periods of time because all the modern lavas erupted within the last 100 years are isotopically homogeneous,with very limited variation in SiO2 compositions.
文摘In this contribution,detailed field descriptions together with petrographic and bulk-rock major,trace and rare earth elements(REE)data are used to constrain the origin and geodynamic setting of the mafic magmatic enclaves(MMEs)recently discovered within the Pan-African Ngaoundal pluton,Adamawa area,central Cameroon.The investigated MMEs are dark-colored with chilled margins,and display medium to coarse-grain igneous textures.The mineral assemblage is either dominated by K-feldspar and carbonate(group Ⅰ),or by amphibole and plagioclase(group Ⅱ),though the overall mineral phases made of amphibole,plagioclase,K-feldspar,and biotite are similar to that of their host syenite but in different proportions.The MMEs in Ngaoundal area are foid-gabbro in composition with SiO_(2) contents ranging between 41.52% and 43.74% and are contiguous with their host granitoids of intermediate composition(SiO_(2)=57.52% to 58.98%).The host granitoid rocks are metaluminous,and belong to the shoshonitic series.Petrographic and geochemical data have revealed that the Ngaoundal MMEs derived from rapid cooling of hot injected lithospheric mantle-derived magma within cooler host granitoids magma and were emplaced in the intraplate geodynamic setting.
文摘Compared to large-scale infrequent disasters like volcanic eruptions, earthquakes, and gas explosions from volcanic (maar) lakes, most small-scale everyday disasters (e.g., landslides and floods) are not well reported and documented in Cameroon, despite the fact that cumulatively, they cause the most casualties and distress to the people affected. This paper documents a debris flow that occurred on the 1st of August 2012 in Kakpenyi, a quarter found in Tinta, one of the villages of Akwaya Sub Division in Manyu Division of the Southwest Region of Cameroon. The event started from the western slope (06°14.350'N & 09°31.475'E) of a hogback in the settlement, and mobilized ca 3.47 × 106 m3 of material over a ca 1 km distance. The material was made up of a chaotic mix of mud, rock fragments, boulders, twigs, tree logs, trunks, and roots. Its distal part dammed river Kakpenyi forming a 10 m deep lake which eventually safely emptied itself. No casualties were recorded but 20 people got injured and 21 people lost farmland. The debris flow was not caused by earthquake shaking. Instead, inappropriate land use acted as a remote cause to predispose the steep slope, while heavy rainfall triggered the flow. Verbal reports talk of a similar event 40 years ago in the area. This shows that Kakpenyi is vulnerable to this kind of hazard, requiring that major infrastructural development projects like roads and bridges in the area be preceded by detailed hazard and vulnerability assessments.
文摘This paper examines the spatial and temporal variability of the mean annual precipitation in the Northern Cameroon on the context of climate change during the time period 1950-2013. The study used homogeneous monthly and annual precipitations database of twenty-five stations located in the Northern Cameroon and Southern Chad Republic. Geostatisticals interpolation methods (Kriging and Inverse Distance Weighting method) associated with Digital Elevation Model were used to establish the spatial distribution of annuals precipitations. The non-parametric Mann- Kendall test and Sen’s slope method were performed to determine respectively trend and magnitude. The result indicates a spatial distribution of precipitation mainly determined by the topography and the geography of the study area. The trend analysis shows a decrease of annual average precipitation across the Northern Cameroon at a rate of ?0.568 mm/year over the time period 1950-2013. The magnitude of decreasing trends ranged between 0.11 and 3.92 mm/year. Statistically significant decreasing trends at the 95% level of confidence were noted at 10% while 5% of stations showed statistically significant increasing. However, 60% of stations indicate a decreasing trend. Monthly analysis of rainfall shows a decreasing trend during June and September while July and August present an increasing trend.