A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical bound...A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical boundary condition at the tool-workpiece interface,and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating.It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool-workpiece interface and inside the shear layer,but the fluctuation amplitudes of the heat density variations are limited.However,it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period.Moreover,the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW.The modeling result is found to be in good agreement with the experimental one.展开更多
A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular refl...A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular reflection from the pool suoface is sensed to describe the relation between the deformed stripes and pool surface depression. Clear images of both the pool boundary and the deformed stripes edges are obtained during gas tungsten arc welding process, which lays foundation for realtime monitoring the pool suoface depression and weld penetration.展开更多
Considering the influence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during h...Considering the influence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during high-speed gas metal arc (GMA) welding. Three-dimensional geometry of the humping bead is numerically simulated only if some extra force and heat acted at the rear part of weld pool are taken into account in the model. It has proved that both the momentum and heat content of backward flowing molten jet must be appropriately treated to quantitatively analyze the physical mechanism of the humping phenomenon.展开更多
A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasin...A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.展开更多
The external magnetic field is applied to mitigating backward flow jet of molten metal in weld pool so that humping bead may be suppressed during high speed gas metal arc welding(GMAW). Therefore, the external magne...The external magnetic field is applied to mitigating backward flow jet of molten metal in weld pool so that humping bead may be suppressed during high speed gas metal arc welding(GMAW). Therefore, the external magnetic field distribution in workpiece is critical to understand the interaction mechanisms of the external magnetic field with molten metal flow. In this study, the steady state external magnetic field induced by excitation device is numerically analyzed by using the the finite element software ANSYS and the three dimensional static magnetic scalar method. The distribution of external transverse magnetic field By in workpiece and arc area is calculated, and the influence of excitation current and air-gap distance on the distribution of transverse magnetic field By has been discussed. The magnetic field distribution in workpiece is measured by using a Tesla-Meter and compared with the simulated result. It is found that both are in good agreement.展开更多
SiC nanoparticles reinforced eutectic Sn-Pb solder were prepared by mechanical mixing method. Reactive wetting of the resultant composite solders on Cu substrates was investigated using real time, in-situ visualizatio...SiC nanoparticles reinforced eutectic Sn-Pb solder were prepared by mechanical mixing method. Reactive wetting of the resultant composite solders on Cu substrates was investigated using real time, in-situ visualization of the triple-line movement. It was found that spreading rates of all solder pastes in this work do not obey Tanner' s law of non-reactive spreading. SiC nano-particles slow down both the pre-melting and post-melting spreading rates of composite solder pustes. As the content of SiC nano-particles increase, the melting point of composite solders decrease, and the spreading time of molten composite solder pastes increases.展开更多
The forces acting on a gas tungsten arc (GTA) weld pool are analyzed. A model of static force condition for fullypenetrated weld pool is developed, and the criterion is set up to judge and evaluate the occurrence te...The forces acting on a gas tungsten arc (GTA) weld pool are analyzed. A model of static force condition for fullypenetrated weld pool is developed, and the criterion is set up to judge and evaluate the occurrence tendency of burn-through defect. Transient variations of the forces affecting the surfaces deformation and collapsing of weld pool are computed, and the percentages of their influencing roles are obtained. For specific material and workpiece thickness, the threshold values below which the burn-through phenomenon does not occur are determined, and compared with the experimental results.展开更多
To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signa...To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signal is detected in realtime to characterize the keyhole size and dimension. The welding current waveform for controlled pulse key-holing strategy is implemented, and two slow-decreasing slopes are added at the dropping point from peak current to base current to further reduce both heat input and arc force so that the controllability of keyhole dynamics is improved. Two kinds of PAW tests are conducted, anti the different parameters of the controlled pulse current and the relevant efflux plasma voltage are measured in real-time to investigate ihe effects of welding current waveform parameters on the key-holing condition.展开更多
According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processi...According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processing the efflux plasma voltage signals,the quantitative relationship among the welding current,efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.展开更多
A novel variant of friction stir welding process, referred as ultrasonic vibration enhanced friction stir welding, is developed to transmit ultrasonic vibration energy directly into the localized area of the workpiece...A novel variant of friction stir welding process, referred as ultrasonic vibration enhanced friction stir welding, is developed to transmit ultrasonic vibration energy directly into the localized area of the workpiece near and ahead of the rotating tool. Experiments are conducted on 6061-T4 aluminium alloy plates by this new process and the conventional friction stir welding process, respectively. The morphology and macrograph of the welds under both conditions are observed and contrasted. The experimental results show that ultrasonic vibration enhanced friction stir welding can improve the weld formation quality and increase the welding efficiency. And it just needs a smaller axial downward force. Because that the added action of ultrasonic vibration energy may enhance the localized softening extent and the plastic flow around the tool. In addition, it also improves the mechanical properties of the welded joints.展开更多
An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature ...An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.展开更多
The plasma arc pressure plays an important role in determining the keyhole formation and size. So it is of great significance to choose adaptive distribution mode of the plasma arc pressure for determining keyhole sha...The plasma arc pressure plays an important role in determining the keyhole formation and size. So it is of great significance to choose adaptive distribution mode of the plasma arc pressure for determining keyhole shape and size. In this study, through employing a double-elliptic distribution mode of plasma arc pressure, three-dimensional keyhole was numerically simulated. The unsymmetric feature of the keyhole inside the weld pool was described. The development of keyhole was demonstrated under different levels of welding current. The critical current required to form an open keyhole was obtained for the study cases .展开更多
Weld pool contains significant information about the welding process. The weld pool images of MAG welding are detected by LaserStrobe system. An algorithm for extracting weld pool edge is proposed according to the cha...Weld pool contains significant information about the welding process. The weld pool images of MAG welding are detected by LaserStrobe system. An algorithm for extracting weld pool edge is proposed according to the characteristics of MAG weld pool images. The maximum weld pool length and width are calculated. The measurement data can be used to verify the results of welding process simulation and to provide a good foundation for automatic control of MAG welding process.展开更多
In high speed MAG welding process, some weld formation defects may be encountered. To get good weld quality, the critical welding speed beyond which humping or undercutting weld bead can occur must be known for differ...In high speed MAG welding process, some weld formation defects may be encountered. To get good weld quality, the critical welding speed beyond which humping or undercutting weld bead can occur must be known for different conditions. In this research, high speed MAG welding tests were carried out to check out the effects of different factors on the critical welding speed. Through observing the weld bead profiles and the macrographs of the transverse sections of MAG welds, the occurrence tendency of humping weld was analyzed, and the values of critical welding speed were determined under different levels of welding current or voltage, and the effect of shielding gas compositions on the critical welding speed was also investigated.展开更多
It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in ke...It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in keyhole plasma arc welding is determined firstly, and then the dynamic force-balance condition on the interface between the plasma jet and the molten metal is dealt with in describing the keyhole formation inside the weld pool. The effects of welding current on the shape and size of keyhole are numerically analyzed. The sharp transformation from a partial keyhole to a full-penetration keyhole is quantitatively demonstrated.展开更多
The temperature fields in laser + GMAW-P hybrid welding for different laser-wire distances in quasi-steady state were calculated using an developed combined heat source model, and the influence of laser-wire distance...The temperature fields in laser + GMAW-P hybrid welding for different laser-wire distances in quasi-steady state were calculated using an developed combined heat source model, and the influence of laser-wire distance on them was analyzed. The results show tbat, at a low level of arc power, the temperature profiles caused by laser and arc energy respecively cannot couple well when the laser-wire distance reaches 4 mm, a trend of separation between them beginning to take place. In the case of high arc power, both the critical laser-wire distance and HAZ width increase.展开更多
The key problem for numerical simulation of plasma arc welding (PAW) process is to develop a suitable and adaptive volumetric heat source mode which reflects the physical characteristics of keyhole PAW. To this end,...The key problem for numerical simulation of plasma arc welding (PAW) process is to develop a suitable and adaptive volumetric heat source mode which reflects the physical characteristics of keyhole PAW. To this end, the keyhole geometry under different PAW process conditions must be predicted. In this paper, a mathematical model for determining the keyhole shape is developed with considering the mass and momentum conservation of the in-keyhole plasma jet as well as the pressure equilibrium at the plasma jet/liquid metal boundary. A suitable heat source model related to the keyhole shape is applied to the calculation of PAW weld dimensions. The predicted results are in good agreement with the experimental ones.展开更多
Modern manufacturing industry demands low cost and high efficient welding processes to remain competitiveness in the time of globalization. In this study, conventional gas metal arc welding (GMAW) was modified, a do...Modern manufacturing industry demands low cost and high efficient welding processes to remain competitiveness in the time of globalization. In this study, conventional gas metal arc welding (GMAW) was modified, a double-electrode GMAW (DE-GMAW) system is developed and DE-GMAW process is implemented through optimization of the design and process parameters and suitable selection of igniting sequence of double arcs. High speed welding tests were carried out to examine the effects of different factors on occurrence of weld formation defects. Through observing the weld bead appearance in DE-GMA W, the values of critical welding speed were determined under different levels of welding current and welding speed.展开更多
During high-speed gas metal arc welding (GMAW), the backward flowing molten jet with high momentum in the weld pool is considered to be responsible for the occurrence of humping bead. To suppress humping bead, an el...During high-speed gas metal arc welding (GMAW), the backward flowing molten jet with high momentum in the weld pool is considered to be responsible for the occurrence of humping bead. To suppress humping bead, an electromagnetic device is developed and coupled with the welding system. By adjusting the conditions of external magnetic field, forward electromagnetic force is obtained to reduce the momentum of the backward flow of molten metal in weld pool. Consequently, the humping bead can be suppressed by adjusting the external magnetic field. Bead-on-plate welding experiment was conducted on mild steel plates, and the influence of magnetic flux density on the arc deflection angle and weld bead quality is investigated. It is found that external magnetic field can remarkably adjust the momentum of backward flow jet and significantly improve the quality of weld bead.展开更多
Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole ...Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.展开更多
基金the financial support from the National Natural Science Foundation of China (Nos. 52005297, 52035005)the Key Research and Development Program of Shandong Province, China (No. 2021ZLGX01)。
文摘A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical boundary condition at the tool-workpiece interface,and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating.It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool-workpiece interface and inside the shear layer,but the fluctuation amplitudes of the heat density variations are limited.However,it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period.Moreover,the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW.The modeling result is found to be in good agreement with the experimental one.
文摘A sensing system is developed to measure the weld pool boundary and pool suoface deformation in gas tungsten arc welding. LaserStrobe technique is used to eliminate the strong arc light inteoference, and specular reflection from the pool suoface is sensed to describe the relation between the deformed stripes and pool surface depression. Clear images of both the pool boundary and the deformed stripes edges are obtained during gas tungsten arc welding process, which lays foundation for realtime monitoring the pool suoface depression and weld penetration.
基金The authors are grateful to the financial support for this project from the National Natural Science Foundation of China under grant No. 50675119.
文摘Considering the influence of backward flowing molten jet observed by experiments, a new pool surface deformation formula and droplets heat content model are used to investigate the humping formation mechanism during high-speed gas metal arc (GMA) welding. Three-dimensional geometry of the humping bead is numerically simulated only if some extra force and heat acted at the rear part of weld pool are taken into account in the model. It has proved that both the momentum and heat content of backward flowing molten jet must be appropriately treated to quantitatively analyze the physical mechanism of the humping phenomenon.
文摘A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.
基金The authors are grateful to the financial support for this research from the National Natural Science Foundation of China ( Grant No. 51275276) and the Research Fund for the Doctoral Program of Higher Education of China ( Grant No. 20120131130009).
文摘The external magnetic field is applied to mitigating backward flow jet of molten metal in weld pool so that humping bead may be suppressed during high speed gas metal arc welding(GMAW). Therefore, the external magnetic field distribution in workpiece is critical to understand the interaction mechanisms of the external magnetic field with molten metal flow. In this study, the steady state external magnetic field induced by excitation device is numerically analyzed by using the the finite element software ANSYS and the three dimensional static magnetic scalar method. The distribution of external transverse magnetic field By in workpiece and arc area is calculated, and the influence of excitation current and air-gap distance on the distribution of transverse magnetic field By has been discussed. The magnetic field distribution in workpiece is measured by using a Tesla-Meter and compared with the simulated result. It is found that both are in good agreement.
文摘SiC nanoparticles reinforced eutectic Sn-Pb solder were prepared by mechanical mixing method. Reactive wetting of the resultant composite solders on Cu substrates was investigated using real time, in-situ visualization of the triple-line movement. It was found that spreading rates of all solder pastes in this work do not obey Tanner' s law of non-reactive spreading. SiC nano-particles slow down both the pre-melting and post-melting spreading rates of composite solder pustes. As the content of SiC nano-particles increase, the melting point of composite solders decrease, and the spreading time of molten composite solder pastes increases.
基金The authors are grateful to the financial support for this project from the National Natural Science Foundation of China under Grant No. 50475131.
文摘The forces acting on a gas tungsten arc (GTA) weld pool are analyzed. A model of static force condition for fullypenetrated weld pool is developed, and the criterion is set up to judge and evaluate the occurrence tendency of burn-through defect. Transient variations of the forces affecting the surfaces deformation and collapsing of weld pool are computed, and the percentages of their influencing roles are obtained. For specific material and workpiece thickness, the threshold values below which the burn-through phenomenon does not occur are determined, and compared with the experimental results.
基金Acknowledgement The authors are grateful to the financial support for this research from the National Natural Science Foundation of China (Key Program Grant No. 50936003).
文摘To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signal is detected in realtime to characterize the keyhole size and dimension. The welding current waveform for controlled pulse key-holing strategy is implemented, and two slow-decreasing slopes are added at the dropping point from peak current to base current to further reduce both heat input and arc force so that the controllability of keyhole dynamics is improved. Two kinds of PAW tests are conducted, anti the different parameters of the controlled pulse current and the relevant efflux plasma voltage are measured in real-time to investigate ihe effects of welding current waveform parameters on the key-holing condition.
基金Project(50540420570) supported by the National Natural Science Foundation of ChinaProject(07-12-002) supported by the Innovative Conception Fund of the Welding Institution of Chinese Mechanical Engineering Society
文摘According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processing the efflux plasma voltage signals,the quantitative relationship among the welding current,efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.
文摘A novel variant of friction stir welding process, referred as ultrasonic vibration enhanced friction stir welding, is developed to transmit ultrasonic vibration energy directly into the localized area of the workpiece near and ahead of the rotating tool. Experiments are conducted on 6061-T4 aluminium alloy plates by this new process and the conventional friction stir welding process, respectively. The morphology and macrograph of the welds under both conditions are observed and contrasted. The experimental results show that ultrasonic vibration enhanced friction stir welding can improve the weld formation quality and increase the welding efficiency. And it just needs a smaller axial downward force. Because that the added action of ultrasonic vibration energy may enhance the localized softening extent and the plastic flow around the tool. In addition, it also improves the mechanical properties of the welded joints.
文摘An adaptive heat source mode is proposed to account for the keyhole effect and the characteristics of volumetric distribution along the direction of the workpiece thickness. Finite element analysis of the temperature field in keyhole plasma arc welding is conducted and the weld geometry is obtained. The predicted results are in agreement with the measured ones.
基金Acknowledgement The authors are grateful to the financial support for this project from the National Natural Science Foundation of China under grant No. 50540420570.
文摘The plasma arc pressure plays an important role in determining the keyhole formation and size. So it is of great significance to choose adaptive distribution mode of the plasma arc pressure for determining keyhole shape and size. In this study, through employing a double-elliptic distribution mode of plasma arc pressure, three-dimensional keyhole was numerically simulated. The unsymmetric feature of the keyhole inside the weld pool was described. The development of keyhole was demonstrated under different levels of welding current. The critical current required to form an open keyhole was obtained for the study cases .
文摘Weld pool contains significant information about the welding process. The weld pool images of MAG welding are detected by LaserStrobe system. An algorithm for extracting weld pool edge is proposed according to the characteristics of MAG weld pool images. The maximum weld pool length and width are calculated. The measurement data can be used to verify the results of welding process simulation and to provide a good foundation for automatic control of MAG welding process.
基金support for this research from the National Natural Science Foundation of China(Grant No.50675119)the Specialized Research Fund for the Doctoral Program of Higher Education in China(Grant No.20050422027).
文摘In high speed MAG welding process, some weld formation defects may be encountered. To get good weld quality, the critical welding speed beyond which humping or undercutting weld bead can occur must be known for different conditions. In this research, high speed MAG welding tests were carried out to check out the effects of different factors on the critical welding speed. Through observing the weld bead profiles and the macrographs of the transverse sections of MAG welds, the occurrence tendency of humping weld was analyzed, and the values of critical welding speed were determined under different levels of welding current or voltage, and the effect of shielding gas compositions on the critical welding speed was also investigated.
文摘It is of great significance to model the keyhole shape and dimensions to optimize the plasma arc welding process parameters. In this study, through employing a combined volumetric heat source mode, the weld pool in keyhole plasma arc welding is determined firstly, and then the dynamic force-balance condition on the interface between the plasma jet and the molten metal is dealt with in describing the keyhole formation inside the weld pool. The effects of welding current on the shape and size of keyhole are numerically analyzed. The sharp transformation from a partial keyhole to a full-penetration keyhole is quantitatively demonstrated.
文摘The temperature fields in laser + GMAW-P hybrid welding for different laser-wire distances in quasi-steady state were calculated using an developed combined heat source model, and the influence of laser-wire distance on them was analyzed. The results show tbat, at a low level of arc power, the temperature profiles caused by laser and arc energy respecively cannot couple well when the laser-wire distance reaches 4 mm, a trend of separation between them beginning to take place. In the case of high arc power, both the critical laser-wire distance and HAZ width increase.
基金The authors are grateful to the financial support to this research from the National Nature Science Foundation of China under Grant No. 50540420570.
文摘The key problem for numerical simulation of plasma arc welding (PAW) process is to develop a suitable and adaptive volumetric heat source mode which reflects the physical characteristics of keyhole PAW. To this end, the keyhole geometry under different PAW process conditions must be predicted. In this paper, a mathematical model for determining the keyhole shape is developed with considering the mass and momentum conservation of the in-keyhole plasma jet as well as the pressure equilibrium at the plasma jet/liquid metal boundary. A suitable heat source model related to the keyhole shape is applied to the calculation of PAW weld dimensions. The predicted results are in good agreement with the experimental ones.
基金The authors wish to thank the financial support for this research from the National Natural Science Foundation of China (Grant No. 50675119).
文摘Modern manufacturing industry demands low cost and high efficient welding processes to remain competitiveness in the time of globalization. In this study, conventional gas metal arc welding (GMAW) was modified, a double-electrode GMAW (DE-GMAW) system is developed and DE-GMAW process is implemented through optimization of the design and process parameters and suitable selection of igniting sequence of double arcs. High speed welding tests were carried out to examine the effects of different factors on occurrence of weld formation defects. Through observing the weld bead appearance in DE-GMA W, the values of critical welding speed were determined under different levels of welding current and welding speed.
基金The authors are grateful to the financial support for this research from the National Natural Science Foundation of China,the Research Fund for the Doctoral Program of Higher Education of China
文摘During high-speed gas metal arc welding (GMAW), the backward flowing molten jet with high momentum in the weld pool is considered to be responsible for the occurrence of humping bead. To suppress humping bead, an electromagnetic device is developed and coupled with the welding system. By adjusting the conditions of external magnetic field, forward electromagnetic force is obtained to reduce the momentum of the backward flow of molten metal in weld pool. Consequently, the humping bead can be suppressed by adjusting the external magnetic field. Bead-on-plate welding experiment was conducted on mild steel plates, and the influence of magnetic flux density on the arc deflection angle and weld bead quality is investigated. It is found that external magnetic field can remarkably adjust the momentum of backward flow jet and significantly improve the quality of weld bead.
基金The authors are grateful to the financial support to this research from the National Natural Science Foundation of China under Grant No. 50540420570.
文摘Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.