期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
搅拌摩擦焊工艺参数对2024-T351铝合金搭接焊接头成形质量和力学性能的影响(英文) 被引量:7
1
作者 I.RADISAVLJEVIC A.ZIVKOVIC +1 位作者 N.RADOVIC V.GRABULOV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3525-3539,共15页
研究搅拌摩擦焊时R/v比对2024-T351铝合金焊接质量的影响。搅拌摩擦焊时搅拌针的旋转速度设定为750、950和1180 r/min,焊接速度在73~190 mm/min内变化,对应的R/v比在5.00~10.27内。采用各种无损(外观检测、X射线检测)和有损(金相... 研究搅拌摩擦焊时R/v比对2024-T351铝合金焊接质量的影响。搅拌摩擦焊时搅拌针的旋转速度设定为750、950和1180 r/min,焊接速度在73~190 mm/min内变化,对应的R/v比在5.00~10.27内。采用各种无损(外观检测、X射线检测)和有损(金相观察、拉伸实验和硬度测量)检测手段对焊接试样进行分析。在所有的试样中,搅拌摩擦焊中各种典型的区域都有存在,不同的区域其晶粒尺寸不同。接头的拉伸性能为基材的52.2%~82.3%。在R/v比为8.06,10.17和10.27时焊接质量最佳。其原因是在最佳搅拌速度下,材料围绕搅拌针充分流动,从而能够填充其中产生的空隙,阻止空洞的生成。结果还表明,R/v 比对接头的硬度分布、洋葱样形状、裂纹的萌生和扩展都有影响。 展开更多
关键词 2024铝合金 搅拌摩擦焊 焊接参数 热量输入 焊接质量
下载PDF
Modeling and Simulation of Mechanical Properties of Nano Particle Modified Polyamide 6
2
作者 I. Yi J. Wiedmaier S. Schmauder 《Journal of Materials Science and Chemical Engineering》 2015年第1期80-87,共8页
This paper discusses the utilization of nano-sized fillers in Polyamide 6 to increase the fracture resistance of the composites, which are crucial for various engineering applications. The toughening of the composites... This paper discusses the utilization of nano-sized fillers in Polyamide 6 to increase the fracture resistance of the composites, which are crucial for various engineering applications. The toughening of the composites is achieved by using dispersed nano-scaled rubber particles (Polyether block copolymer) as the inclusion in Polyamide 6 matrix. For a better understanding of the mechanical behavior of the composites, it is indispensable to use analytical and numerical models for evaluating the overall mechanical behavior and damage mechanism of the composite. In this work the toughening mechanism is studied through literature review and by analytical modeling. The mechanical behavior of the composites such as elastic plastic and damage properties are calculated numerically with 3D representative volume element (RVE) models. The numerical results are compared with previously obtained experiments. The influence of volume fraction and aspect ratio of inclusions on the macroscopic stress strain curve as well as the size effect of inclusions and also the failure properties of the composite are studied in detail. 展开更多
关键词 PA 6 NANOCOMPOSITE Dispersed RUBBER PARTICLES TOUGHENING Mechanism FEM Modeling MECHANICAL Property
下载PDF
Numerical Simulation of Mechanical Properties of Nano Particle Modified Polyamide 6 via RVE Modeling
3
作者 J. Huang M. Uhrig +1 位作者 U. Weber S. Schmauder 《Journal of Materials Science and Chemical Engineering》 2015年第1期95-102,共8页
In this paper the physical influences on the mechanical behavior of a Polyamide 6 (PA 6)/Mont- morillonit (MMT)-nanocomposite are examined by a selected structure modification in a numerical parameter study. Experimen... In this paper the physical influences on the mechanical behavior of a Polyamide 6 (PA 6)/Mont- morillonit (MMT)-nanocomposite are examined by a selected structure modification in a numerical parameter study. Experimental data of tensile tests of three different volume fractions at ambient temperature are used as reference. These were compared to homogenized stress-strain curves calculated with 3D representative volume elements (RVE) under periodic boundary conditions, in which the curve areas are considered until the tensile yield strength is reached. Besides the influence of filler orientation, exfoliation and its volume fraction, both adhesive interface behavior between the filler and matrix, and local partially crystalline interphases around the MMT-plates were also taken into account. A good approximation of the numerical representation of the experimental curves was achieved only after the introduction of the 30 - 40 nm thick partially crystalline interphases with higher stiffness and strength around the MMT-plates. The use of an exclusively isotropic matrix led to an underestimation of the mechanical values. The local modifications of the morphology were assumed to be transversely isotropic both in the elastic and in the plastic region. The transverse plane is defined by the lateral particle surface. Compared with the experimentally determined values of the corresponding Young’s Modulus, an excellent correlation was achieved. The yield strength for the largest volume fraction shows the best agreement with experimental values. 展开更多
关键词 PA 6 NANOCOMPOSITE RVE MODELING MECHANICAL Properties
下载PDF
Additively manufactured metallic biomaterials 被引量:2
4
作者 Elham Davoodi Hossein Montazerian +13 位作者 Anooshe Sadat Mirhakimi Masoud Zhianmanesh Osezua Ibhadode Shahriar Imani Shahabad Reza Esmaeilizadeh Einollah Sarikhani Sahar Toorandaz Shima ASarabi Rohollah Nasiri Yangzhi Zhu Javad Kadkhodapour Bingbing Li Ali Khademhosseini Ehsan Toyserkan 《Bioactive Materials》 SCIE 2022年第9期214-249,共36页
Metal additive manufacturing(AM)has led to an evolution in the design and fabrication of hard tissue substitutes,enabling personalized implants to address each patient’s specific needs.In addition,internal pore archi... Metal additive manufacturing(AM)has led to an evolution in the design and fabrication of hard tissue substitutes,enabling personalized implants to address each patient’s specific needs.In addition,internal pore architectures integrated within additively manufactured scaffolds,have provided an opportunity to further develop and engineer functional implants for better tissue integration,and long-term durability.In this review,the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted.After introducing metal AM processes,biocompatible metals adapted for integration with AM machines are presented.Then,we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including,topology optimization techniques,as well as unit cell patterns based on lattice networks,and triply periodic minimal surface.Here,the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed.Subsequently,the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters.We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation.Finally,we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry. 展开更多
关键词 Additive manufacturing Metal implant Porous scaffold Tissue engineering BIOMATERIALS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部