In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary...In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jaeobi or Gauss-Seidel smoothers per- formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel methods is independent of the mesh sizes and mesh levels. Numerical experiments are given to confirm the theoretical results.展开更多
基金Acknowledgements. The work of the first author was supported by the National Basic Research Program under the Grant 2011CB30971 and National Science Foundation of China (11171335). The work of the second author was supported by the National Natural Science Foundation of China (Grant No. 11201394) and the Fundamental Research Funds for the Central Universities (Grant No. 2012121003).
文摘In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jaeobi or Gauss-Seidel smoothers per- formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel methods is independent of the mesh sizes and mesh levels. Numerical experiments are given to confirm the theoretical results.