An organics/metal Schottky diode is fabricated using 3, 4: 9, 10-perylenetetracarboxylic- dianhydride(PTCDA) thin film sandwiched between ITO and Au by simple thermal evaporation technique. The current-voltage(I-V...An organics/metal Schottky diode is fabricated using 3, 4: 9, 10-perylenetetracarboxylic- dianhydride(PTCDA) thin film sandwiched between ITO and Au by simple thermal evaporation technique. The current-voltage(I-V) characteristics are investigated at room temperature in open air. The results show the rectification ratio is in excess of 100. From the capacitance-frequency(C-f) and capacitance-voltage(C-V) measurements, the Schottky barrier height between 0.2-0.3 eV is obtained according to standard Schottky theory.展开更多
High-throughput small-molecule assays play essential roles in biomedical diagnosis,drug discovery,environmental analysis,and physiological function research.Nanoplasmonics holds a great potential for the label-free de...High-throughput small-molecule assays play essential roles in biomedical diagnosis,drug discovery,environmental analysis,and physiological function research.Nanoplasmonics holds a great potential for the label-free detection of small molecules at extremely low concentrations.Here,we report the development of nanoplasmonic paper(NP-paper)for the rapid separation and ultrasensitive detection of mixed small molecules.NP-paper employs nanogap-rich silver nanoislands on cellulose fibers,which were simply fabricated at the wafer level by using low-temperature solid-state dewetting of a thin silver film.The nanoplasmonic detection allows for the scalable quantification and identification of small molecules over broad concentration ranges.Moreover,the combination of chromatographic separation and nanoplasmonic detection allows both the highly sensitive fluorescence detection of mixed small molecules at the attogram level and the label-free detection at the sub-nanogram level based on surface-enhanced Raman scattering.This novel material provides a new diagnostic platform for the high-throughput,low-cost,and label-free screening of mixed small molecules as an alternative to conventional paper chromatography.展开更多
Light is a union of electric and magnetic fields,and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures.There,complicated electric and magnetic fie...Light is a union of electric and magnetic fields,and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures.There,complicated electric and magnetic fields varying over subwavelength scales are generally present,which results in photonic phenomena such as extraordinary optical momentum,superchiral fields,and a complex spatial evolution of optical singularities.An understanding of such phenomena requires nanoscale measurements of the complete optical field vector.Although the sensitivity of nearfield scanning optical microscopy to the complete electromagnetic field was recently demonstrated,a separation of different components required a priori knowledge of the sample.Here,we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single near-field measurement without any numerical modeling of the structure.As examples,we unravel the fields of two prototypical nanophotonic structures:a photonic crystal waveguide and a plasmonic nanowire.These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior.展开更多
基金National"973"Foundation of China(2005CB724501) Recreating Foundation of National Defence for ChineseAcademy of Sciences(CXJJ -145)
文摘An organics/metal Schottky diode is fabricated using 3, 4: 9, 10-perylenetetracarboxylic- dianhydride(PTCDA) thin film sandwiched between ITO and Au by simple thermal evaporation technique. The current-voltage(I-V) characteristics are investigated at room temperature in open air. The results show the rectification ratio is in excess of 100. From the capacitance-frequency(C-f) and capacitance-voltage(C-V) measurements, the Schottky barrier height between 0.2-0.3 eV is obtained according to standard Schottky theory.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)(2014022751,2014039957,2011-0031866)supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(grant number:HI13C2181).
文摘High-throughput small-molecule assays play essential roles in biomedical diagnosis,drug discovery,environmental analysis,and physiological function research.Nanoplasmonics holds a great potential for the label-free detection of small molecules at extremely low concentrations.Here,we report the development of nanoplasmonic paper(NP-paper)for the rapid separation and ultrasensitive detection of mixed small molecules.NP-paper employs nanogap-rich silver nanoislands on cellulose fibers,which were simply fabricated at the wafer level by using low-temperature solid-state dewetting of a thin silver film.The nanoplasmonic detection allows for the scalable quantification and identification of small molecules over broad concentration ranges.Moreover,the combination of chromatographic separation and nanoplasmonic detection allows both the highly sensitive fluorescence detection of mixed small molecules at the attogram level and the label-free detection at the sub-nanogram level based on surface-enhanced Raman scattering.This novel material provides a new diagnostic platform for the high-throughput,low-cost,and label-free screening of mixed small molecules as an alternative to conventional paper chromatography.
基金the support from the European Research Council(ERC Advanced Grant 340438-CONSTANS)part of the research program Rubicon with project number 680-50-1513+1 种基金which is partly financed by the Netherlands Organization for Scientific Research(NWO)funded by the Natural Sciences and Engineering Research Council of Canada.
文摘Light is a union of electric and magnetic fields,and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures.There,complicated electric and magnetic fields varying over subwavelength scales are generally present,which results in photonic phenomena such as extraordinary optical momentum,superchiral fields,and a complex spatial evolution of optical singularities.An understanding of such phenomena requires nanoscale measurements of the complete optical field vector.Although the sensitivity of nearfield scanning optical microscopy to the complete electromagnetic field was recently demonstrated,a separation of different components required a priori knowledge of the sample.Here,we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single near-field measurement without any numerical modeling of the structure.As examples,we unravel the fields of two prototypical nanophotonic structures:a photonic crystal waveguide and a plasmonic nanowire.These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior.