期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Insights into the hydrogen evolution reaction in vanadium redox flow batteries:A synchrotron radiation based X-ray imaging study
1
作者 Kerstin Köble Alexey Ershov +7 位作者 Kangjun Duan Monja Schilling Alexander Rampf Angelica Cecilia TomášFaragó Marcus Zuber Tilo Baumbach Roswitha Zeis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期132-144,共13页
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo... The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems. 展开更多
关键词 Vanadium redox flow battery Synchrotron X-ray imaging Tomography Hydrogen evolution reaction Gas bubbles Deep learning
下载PDF
Assessing the microstructure and in vitro degradation behavior of Mg-xGd screw implants using μCT 被引量:1
2
作者 Diana Krüger Berit Zeller-Plumhoff +5 位作者 Björn Wiese Sangbong Yi Marcus Zuber D.C.Florian Wieland Julian Moosmann Regine Willumeit-Römer 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2208-2223,共16页
Biodegradable implants are taking an increasingly important role in the area of orthopedic implants with the aim to replace permanent implants for temporary bone healing applications.During the implant preparation pro... Biodegradable implants are taking an increasingly important role in the area of orthopedic implants with the aim to replace permanent implants for temporary bone healing applications.During the implant preparation process,the material’s surface and microstructure are being changed by stresses induced by machining.Hence degradable metal implants need to be fully characterized in terms of the influence of machining on the resulting microstructure and corrosion performance.In this study,micro-computed tomography(μCT)is used for the quantification of the degradation rate of biodegradable implants.To our best knowledge,for the first time quantitative measures are introduced to describe the degradation homogeneity in 3D.This information enables a prediction in terms of implant stability during the degradation in the body.Two magnesium gadolinium alloys,Mg-5Gd and Mg-10 Gd(all alloy compositions are given in weight%unless otherwise stated),in the shape of M2 headless screws have been investigated for their microstructure and their degradation performance up to 56 days.During the microstructure investigations particular attention was paid to the localized deformation of the alloys,due to the machining process.In vitro immersion testing was performed to assess the degradation performance quantified by subsequent weight loss and volume loss(usingμCT)measurements.Although differences were observed in the degree of screw’s near surface microstructure being influenced from machining,the degradation rates of both materials appeared to be suitable for application in orthopedic implants.From the degradation homogeneity point of view no obvious contrast was detected between both alloys.However,the higher degradation depth ratios between the crests and roots of Mg-5Gd ratios may indicated a less homogeneous degradation of the screws of these alloys on contract to the ones made of Mg-10Gd alloys.Due to its lower degradation rates,its more homogeneous microstructure,its weaker texture and better degradation performance extruded Mg-10Gd emerged more suitable as implant material than Mg-5Gd. 展开更多
关键词 Magnesium alloys Biodegradable implant Degradation rate Degradation homogeneity Micro-comptued tomography
下载PDF
Lateral dipole moments induced by all-cis-pentafluorocyclohexyl groups cause unanticipated effects in self-assembled monolayers
3
作者 Christian Fischer Saunak Das +5 位作者 Qingzhi Zhang Yangbiao Liu Lothar Weinhardt David O’Hagan Michael Zharnikov Andreas Terfort 《Nano Research》 SCIE EI CSCD 2023年第8期11030-11041,共12页
All-cis-hexafluoro-and all-cis-pentafluoro-cyclohexane(PFCH)derivatives are new kinds of materials,the structures and properties of which are dominated by the highly dipolar Janus-face motif.Here,we report on the effe... All-cis-hexafluoro-and all-cis-pentafluoro-cyclohexane(PFCH)derivatives are new kinds of materials,the structures and properties of which are dominated by the highly dipolar Janus-face motif.Here,we report on the effects of integrating the PFCH groups into self-assembled monolayers(SAMs)of alkanethiolates on Au(111).Monolayers with an odd(eleven)and even(twelve)number of methylene groups were characterized in detail by several complementary experimental tools,supported by theoretical calculations.Surprisingly,all the data show a high similarity of both kinds of monolayers,nearly lacking the typically observed odd-even effects.These new monolayers have a packing density about 1/3 lower than that of non-substituted alkanethiolate monolayers,caused by the bulkiness of the PFCH moieties.The orientations of the PFCH groups and the alkyl chains could be determined independently,suggesting a conformation similar to the one found in the solid state structure of an analogous compound.Although in the SAMs the PFCH groups are slightly tilted away from the surface normal with the axial fluorine atoms pointing downwards,most of the dipole moments of the group remain oriented parallel to the surface,which is a unique feature for a SAM system.The consequences are much lower water contact angles compared to other partly fluorinated SAMs as well as rather moderate work function values.The interaction between the terminal PFCH moieties results in an enhanced stability of the PFCH-decorated SAMs toward exchange reaction with potential molecular substituents in spite of the lower packing density of these films. 展开更多
关键词 odd-even-effects work function self-assembled monolayer(SAM) kinetic stability infrared-reflection absorption spectroscopy X-ray photoelectron spectroscopy
原文传递
Speciation in nanosecond laser ablation of zinc in water
4
作者 Stefan Reich Yannis Klügl +3 位作者 Anna Ziefuss RenéStreubel Jorg Gottlicher Anton Plech 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2022年第7期90-98,共9页
In situ experimental methods have been applied to resolve mass flow and chemical speciation in the pulsed laser ablation of zinc in water. The chemical speciation has been resolved by time-resolved μ-X-ray absorption... In situ experimental methods have been applied to resolve mass flow and chemical speciation in the pulsed laser ablation of zinc in water. The chemical speciation has been resolved by time-resolved μ-X-ray absorption spectroscopy and mapped onto the macroscopic mass flow during material ejection from the metallic target and bubble dynamics of evaporated water. Large particles and agglomerates have been detected via dark-field X-ray imaging with a Shack-Hartmann sensor. The characteristic of the dynamics is that the vapor bubble is nearly homogeneously filled with ablated material. This persists during bubble collapse,which means that the ablated particles are captured and retracted towards the target. Limited mass escape is indicated by the X-ray absorption signal. Importantly, the near-edge structure at the Zn-K;transition delivers information on the chemical state of the ejected material. It clearly confirms that oxidation is not present within the bubble phase and the following sub-millisecond time scale. The oxidation proceeds on Zn nanoparticles in suspension on a second to minute course. Within the first microseconds,a Zn atom phase is detected that resembles Zn vapor. The addition of either reductive NaBH;or oxidative HAuCl;to the water phase influences the quantity of the atom contribution moderately, but does not influence the initial atom phase. Such behavior must be understood in terms of the nanosecond pulse excitation. After ejected material and a plasma is formed within the pulse duration of 7 ns the laser is able to further heat the ejecta and transform it partly into vapor. Correspondingly, the coupling of energy into the ablation zone as followed by plasma intensity and bubble size follows a threshold behavior as a function of laser fluence, marking the onset of laser-plasma heating. The reaction conditions inside the bubble are probably reductive due to the concomitant formation of excess hydrogen. 展开更多
关键词 laser ablation in liquids elemental speciation X-ray absorption spectroscopy OXIDATION zinc oxide nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部