This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm.By analyzing GPS data collected in ...This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm.By analyzing GPS data collected in Japan,we investigate temporal variations in the horizontal two-dimensional distribution of total electron content(TEC)during the geomagnetic storm.The SYM-H index reached-142 n T around 08 UT on 28 May 2017.TEC depletions extending up to approximately 38°N along the meridional direction appeared over Japan around 05 LT(LT=UT+9 hours)on 29 May 2017,when TEC rapidly increased at sunrise due to the solar extreme ultraviolet(EUV)radiation.The TEC depletions appeared sequentially over Japan for approximately 8 hours in sunlit conditions.At 06 LT on 29 May,when the plasma depletions first appeared over Japan,the background TEC was enhanced to approximately 17 TECU,and then decreased to approximately 80%of the TEC typical of magnetically quiet conditions.We conclude that this temporal variation of background plasma density in the ionosphere was responsible for the persistence of these plasma depletions for so long in daytime.By using the Naval Research Laboratory:Sami2 is Another Model of the Ionosphere(SAMI2),we have evaluated how plasma production and ambipolar diffusion along the magnetic field may affect the rate of plasma depletion disappearance.Simulation shows that the plasma density increases at the time of plasma depletion appearance;subsequent decreases in the plasma density appear to be responsible for the long-lasting persistence of plasma depletions during daytime.The plasma density depletion in the top side ionosphere is not filled by the plasma generated by the solar EUV productions because plasma production occurs mainly at the bottom side of the ionosphere.展开更多
Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks fromthe Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ances...Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks fromthe Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia.Ion microprobe data for magmatic zircon domains from eight mafic tointermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean 206Pb/238U ages spanning the entire Permian period(302–254 Ma).Under cathodoluminescence,primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating,irregularly curved featureless or weakly zoned secondary domains that mostly yielded U–Pb ages of 250–240 Ma and relatively high Th/U ratios(>0.2).These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids.Available whole-rock geochemical and Sr–Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic–Mesozoic Cordilleran arc system built upon the margin of the North China Craton,together with the YeongnamMassif in southern Korea.The arcmagmatismalong this systemwas commenced in the Carboniferous and culminated in the Permian–Triassic transition period.Highly positiveεHf(t)values(>+12)of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism.On the other hand,near-chondriticεHf(t)values(+5 to−2)of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin.Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints.Resumed highly positive zirconεHf(t)values(>+9)shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.展开更多
Previous studies have proposed that both the thermospheric neutral wind and the equatorial electrojet(EEJ)near sunset play important roles in the pre-reversal enhancement(PRE)mechanism.In this study,we have used obser...Previous studies have proposed that both the thermospheric neutral wind and the equatorial electrojet(EEJ)near sunset play important roles in the pre-reversal enhancement(PRE)mechanism.In this study,we have used observations made in the equatorial region of Southeast Asia during March–April and September–October in 2010–2013 to investigate influences of the eastward neutral wind and the EEJ on the PRE’s strength.Our analysis employs data collected by the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE)satellite to determine the zonal(east-west direction)neutral wind at an altitude of~250 km(bottomside F region)at longitudes of 90°–130°E in the dusk sector.Three ionosondes,at Chumphon(dip lat.:3.0°N)in Thailand,at Bac Lieu(dip lat.:1.7°N)in Vietnam,and at Cebu(dip lat.:3.0°N)in Philippines,provided the data we have used to derive the PRE strength.Data from two magnetometers—at Phuket(dip lat.:0.1°S)in Thailand and at Kototabang(dip lat.:10.3°S)in Indonesia—were used to estimate the EEJ strength.Our study is focused particularly on days with magnetically quiet conditions.We have found that the eastward neutral wind and the EEJ are both closely correlated with the PRE;their cross-correlation coefficients with it are,respectively,0.42 and 0.47.Their relationship with each other is weaker:the cross-correlation coefficient between the eastward neutral wind and the EEJ is just 0.26.Our findings suggest that both the eastward neutral wind and the EEJ near sunset are involved in the PRE mechanism.Based on the weak relationship between these two parameters,however,they appear to be significantly independent of each other.Thus,the wind and the EEJ are likely to be influencing the PRE magnitude independently,their effects balancing each other.展开更多
Large Scale Wave Structures(LSWS)in the equatorial ionospheric F-region were observed by measuring spatial and temporal variations within detrended total electron content(dTEC)data obtained by ground-based GNSS receiv...Large Scale Wave Structures(LSWS)in the equatorial ionospheric F-region were observed by measuring spatial and temporal variations within detrended total electron content(dTEC)data obtained by ground-based GNSS receivers over the South American continent.By using dTEC-maps,we have been able to produce,for the first-time,two-dimensional representations of LSWS.During the period from September to December,the LSWS frequently occurred starting a few hours prior to Equatorial Plasma Bubble(EPB)development.From 17 events of LSWS observed in 2014 and 2015,wave characteristics were obtained:the observed wavelengths,periods,and the phase speeds are respectively,~900 km,~41 min and~399 m/s;the waves propagated from the northeast to southeast.In some cases the front of the oscillation was meridionally aligned,extending to more than 1600 km,the first time such large extension of the wavefront has been reported.From F-layer bottom height oscillation data,measured by ionosonde,LSWS exhibit two different vertical phase propagation modes,in-phase and downward phase.The former mode indicates the presence of a polarization electric field in the F-layer bottom side;the latter suggests propagation of atmospheric gravity waves.The presence of LSWS near the solar terminator,followed by the development of EPBs,suggests that the upwelling of the F-layer bottom height produces a condition favorable to the development of Rayleigh–Taylor instability.展开更多
The 2 nd Equatorial Plasma Bubble(EPB)workshop,funded by the Institute of Geology and Geophysics,Chinese Academy of Sciences,and the National Natural Science Foundation of China,took place in Beijing,China during Sept...The 2 nd Equatorial Plasma Bubble(EPB)workshop,funded by the Institute of Geology and Geophysics,Chinese Academy of Sciences,and the National Natural Science Foundation of China,took place in Beijing,China during September 13–15,2019.The EPB workshop belongs to a conference series that began in 2016 in Nagoya,Japan at the Institute for Space-Earth Environmental Research,Nagoya University,resulting in a special issue of Progress in Earth and Planetary Science that focused on EPBs.The main goal of the series is to organize in-depth discussion by scientists working on ionospheric irregularities,and solve the scientific challenges in EPB and ionospheric scintillation forecasting.The 2 nd EPB workshop gathered almost 60 scientists from seven countries.A total of 20 invited and contributing papers focusing on ionospheric irregularities and scintillations were presented.Here we briefly comment on 10 papers included in this special issue.展开更多
The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions,including solar flares,coronal mass ejections,eruptive filaments,and various scales of jets.The differen...The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions,including solar flares,coronal mass ejections,eruptive filaments,and various scales of jets.The different kinds of flares may have different characteristics of energy and spectral distribution.In this work,we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behaviour and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves,and X-ray observations of GOES,RHESSI,and Fermi/GBM.We found that:all the confined flare events were associated with a microwave continuum burst extending to frequencies of9.4~15.4 GHz,and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz.The median value is around 9 GHz.The microwave burst energy(or nuence)and the peak frequency are found to provide useful criteria to estimate the power of solar flares.The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al.(2004).All 10 events studied did not produce detectable hard X-rays with energies above~300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.展开更多
Analysis of solar-cell array panel (SAP) data from the Arase satellite orbiting in the inner magnetosphere showed a clear degradation of solar cells that could be attributed to trapped protons with energies greater th...Analysis of solar-cell array panel (SAP) data from the Arase satellite orbiting in the inner magnetosphere showed a clear degradation of solar cells that could be attributed to trapped protons with energies greater than 6 MeV. Proton fluence was determined based on variations in the open-circuit voltage (Voc) of the solar cells, which we compared with that expected based on various distribution models (AP8MAX, AP9 mean and CRRESPRO quiet) of trapped protons. We found a general agreement, confirming the major contribution of trapped protons to the degradation, as well as a slight difference in the fluence expected based on the model calculations. To minimize this difference, we slightly modified the models, and found that concentrating the energetic protons on the magnetic equator provided a better agreement. Our results indicate that >6 MeV protons also has the equatorial concentration as reported for >18 MeV protons from the Van Allen Probes observation, and are interpreted as two components of the trapped protons, i.e., those of solar energetic particle (SEP) origin have an anisotropic pitch-angle distribution and are confined near the magnetic equator.展开更多
In the terrain following coordinate,Gal-Chen and Somerville[1]and other proposed a vertical coordinate z∝(z−z_(bottom))/(ztop−z_(bottom))and constant spatial intervals ofδx andδy along the other directions.Because ...In the terrain following coordinate,Gal-Chen and Somerville[1]and other proposed a vertical coordinate z∝(z−z_(bottom))/(ztop−z_(bottom))and constant spatial intervals ofδx andδy along the other directions.Because the variation ofδx andδy was ignored,their coordinate does not really follow the terrain.It fails to reproduce the divergence and curl over a complex terrain.Aligning the coordinate with real terrain,the divergence and curl we obtained from the curvilinear coordinate are consistent with the Cartesian coordinate.With a modification,the simulated total mass,energy,and momentum from the Navier-Stokes equations are conserved and in agreement with those calculated from Cartesian coordinate.展开更多
We report the discovery of KMT-2020-BLG-0414 Lb,with a planet-to-host mass ratio q2=0.9-1.2×10-5=3-4 q⊕at 1σ,which is the lowest mass-ratio microlensing planet to date.Together with two other recent discoveries...We report the discovery of KMT-2020-BLG-0414 Lb,with a planet-to-host mass ratio q2=0.9-1.2×10-5=3-4 q⊕at 1σ,which is the lowest mass-ratio microlensing planet to date.Together with two other recent discoveries(4?q/q⊕?6),it fills out the previous empty sector at the bottom of the triangular(log s,log q)diagram,where s is the planet-host separation in units of the angular Einstein radiusθE.Hence,these discoveries call into question the existence,or at least the strength,of the break in the mass-ratio function that was previously suggested to account for the paucity of very low-q planets.Due to the extreme magnification of the event,Amax~1450 for the underlying single-lens event,its light curve revealed a second companion with q3~0.05 and|log s3|~1,i.e.,a factor~10 closer to or farther from the host in projection.The measurements of the microlens parallaxπE and the angular Einstein radiusθE allow estimates of the host,planet and second companion masses,(M1,M2,M3)~(0.3 M⊙,1.0 M⊕,17 MJ),the planet and second companion projected separations,(a⊥,2,a⊥,3)~(1.5,0.15 or 15)au,and system distance DL~1 kpc.The lens could account for most or all of the blended light(I~19.3)and so can be studied immediately with high-resolution photometric and spectroscopic observations that can further clarify the nature of the system.The planet was found as part of a new program of high-cadence follow-up observations of high-magnification events.The detection of this planet,despite the considerable difficulties imposed by COVID-19(two KMT sites and OGLE were shut down),illustrates the potential utility of this program.展开更多
基金supported by the Japan Society for the Promotion of Science,KAKENHI Grants,16H06286 and 20H00197supported by NASA(NNH17ZDA001N07)NSF(AGS-1931415)grants(JDH)。
文摘This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm.By analyzing GPS data collected in Japan,we investigate temporal variations in the horizontal two-dimensional distribution of total electron content(TEC)during the geomagnetic storm.The SYM-H index reached-142 n T around 08 UT on 28 May 2017.TEC depletions extending up to approximately 38°N along the meridional direction appeared over Japan around 05 LT(LT=UT+9 hours)on 29 May 2017,when TEC rapidly increased at sunrise due to the solar extreme ultraviolet(EUV)radiation.The TEC depletions appeared sequentially over Japan for approximately 8 hours in sunlit conditions.At 06 LT on 29 May,when the plasma depletions first appeared over Japan,the background TEC was enhanced to approximately 17 TECU,and then decreased to approximately 80%of the TEC typical of magnetically quiet conditions.We conclude that this temporal variation of background plasma density in the ionosphere was responsible for the persistence of these plasma depletions for so long in daytime.By using the Naval Research Laboratory:Sami2 is Another Model of the Ionosphere(SAMI2),we have evaluated how plasma production and ambipolar diffusion along the magnetic field may affect the rate of plasma depletion disappearance.Simulation shows that the plasma density increases at the time of plasma depletion appearance;subsequent decreases in the plasma density appear to be responsible for the long-lasting persistence of plasma depletions during daytime.The plasma density depletion in the top side ionosphere is not filled by the plasma generated by the solar EUV productions because plasma production occurs mainly at the bottom side of the ionosphere.
基金jointly supported by a Basic Research Project(20-3111-1:Geological survey in the Korean Peninsula and publication of the geological maps)of the Korea Institute of Geoscience and Mineral Resources,funded by the Ministry of Science and ICT,Korearesearch grants from the Korea Basic Science Institute(C070110,C030120).
文摘Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks fromthe Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia.Ion microprobe data for magmatic zircon domains from eight mafic tointermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean 206Pb/238U ages spanning the entire Permian period(302–254 Ma).Under cathodoluminescence,primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating,irregularly curved featureless or weakly zoned secondary domains that mostly yielded U–Pb ages of 250–240 Ma and relatively high Th/U ratios(>0.2).These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids.Available whole-rock geochemical and Sr–Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic–Mesozoic Cordilleran arc system built upon the margin of the North China Craton,together with the YeongnamMassif in southern Korea.The arcmagmatismalong this systemwas commenced in the Carboniferous and culminated in the Permian–Triassic transition period.Highly positiveεHf(t)values(>+12)of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism.On the other hand,near-chondriticεHf(t)values(+5 to−2)of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin.Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints.Resumed highly positive zirconεHf(t)values(>+9)shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.
基金supported by the program of Follow-up Research Guidance of Japan Student Services Organization(JASSO)in 2019the Indonesian Ministry of Research and Technology and National Research and Innovative Agency(Kementerian RISTEK-BRIN)through the program of Pusat Unggulan Iptek(PUI)in 2019+4 种基金the Space Science Center of LAPAN through a research grant program in 2020support from JSPS KAKENHI Grants 18H01270,18H04446,and 17KK0095JRPs-LEAD with DFGpartially supported by JSPS KAKENHI Grant Number 20H00197supported by the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(grant number B05F630018)。
文摘Previous studies have proposed that both the thermospheric neutral wind and the equatorial electrojet(EEJ)near sunset play important roles in the pre-reversal enhancement(PRE)mechanism.In this study,we have used observations made in the equatorial region of Southeast Asia during March–April and September–October in 2010–2013 to investigate influences of the eastward neutral wind and the EEJ on the PRE’s strength.Our analysis employs data collected by the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE)satellite to determine the zonal(east-west direction)neutral wind at an altitude of~250 km(bottomside F region)at longitudes of 90°–130°E in the dusk sector.Three ionosondes,at Chumphon(dip lat.:3.0°N)in Thailand,at Bac Lieu(dip lat.:1.7°N)in Vietnam,and at Cebu(dip lat.:3.0°N)in Philippines,provided the data we have used to derive the PRE strength.Data from two magnetometers—at Phuket(dip lat.:0.1°S)in Thailand and at Kototabang(dip lat.:10.3°S)in Indonesia—were used to estimate the EEJ strength.Our study is focused particularly on days with magnetically quiet conditions.We have found that the eastward neutral wind and the EEJ are both closely correlated with the PRE;their cross-correlation coefficients with it are,respectively,0.42 and 0.47.Their relationship with each other is weaker:the cross-correlation coefficient between the eastward neutral wind and the EEJ is just 0.26.Our findings suggest that both the eastward neutral wind and the EEJ near sunset are involved in the PRE mechanism.Based on the weak relationship between these two parameters,however,they appear to be significantly independent of each other.Thus,the wind and the EEJ are likely to be influencing the PRE magnitude independently,their effects balancing each other.
基金supported by CNPq(Conselho Nacional de Pesquisa e desenvolvimento)under the grant,310927/2020-0the Sao Paulo Research Foundation(FAPESP)for its grant 2018/09066-8+2 种基金CAPES(Coordenacao de Aperfeicoamento de Pessoal de Nível Superior)the JSPS(Japan Society for Promotion of Science)KAKENHI for its support(grant JP 15H05815)the National Natural Science Foundation of China for its support(Grant No.42020104002)。
文摘Large Scale Wave Structures(LSWS)in the equatorial ionospheric F-region were observed by measuring spatial and temporal variations within detrended total electron content(dTEC)data obtained by ground-based GNSS receivers over the South American continent.By using dTEC-maps,we have been able to produce,for the first-time,two-dimensional representations of LSWS.During the period from September to December,the LSWS frequently occurred starting a few hours prior to Equatorial Plasma Bubble(EPB)development.From 17 events of LSWS observed in 2014 and 2015,wave characteristics were obtained:the observed wavelengths,periods,and the phase speeds are respectively,~900 km,~41 min and~399 m/s;the waves propagated from the northeast to southeast.In some cases the front of the oscillation was meridionally aligned,extending to more than 1600 km,the first time such large extension of the wavefront has been reported.From F-layer bottom height oscillation data,measured by ionosonde,LSWS exhibit two different vertical phase propagation modes,in-phase and downward phase.The former mode indicates the presence of a polarization electric field in the F-layer bottom side;the latter suggests propagation of atmospheric gravity waves.The presence of LSWS near the solar terminator,followed by the development of EPBs,suggests that the upwelling of the F-layer bottom height produces a condition favorable to the development of Rayleigh–Taylor instability.
基金the support from National Natural Science Foundation of China(42020104002)。
文摘The 2 nd Equatorial Plasma Bubble(EPB)workshop,funded by the Institute of Geology and Geophysics,Chinese Academy of Sciences,and the National Natural Science Foundation of China,took place in Beijing,China during September 13–15,2019.The EPB workshop belongs to a conference series that began in 2016 in Nagoya,Japan at the Institute for Space-Earth Environmental Research,Nagoya University,resulting in a special issue of Progress in Earth and Planetary Science that focused on EPBs.The main goal of the series is to organize in-depth discussion by scientists working on ionospheric irregularities,and solve the scientific challenges in EPB and ionospheric scintillation forecasting.The 2 nd EPB workshop gathered almost 60 scientists from seven countries.A total of 20 invited and contributing papers focusing on ionospheric irregularities and scintillations were presented.Here we briefly comment on 10 papers included in this special issue.
基金the National Natural Science Foundation of China(NSFC,Grant Nos.11790301,11973057,11941003,11790305 and 61811530282)Chinese-French cooperation between CNRS and NSFC,the MOST(Grant No.2014FY120300)+5 种基金the National Key R&D Program of China(Grant No.2018YFA0404602)the International Partnership Program of Chinese Academy of Sciences(Grant No.183311KYSB20200003)the Application and Foundation Project of Yunnan Province(Grant No.202001BB050032)the Commission for Collaborating Research Program of CAS KLSA,NAOC(Grant No.KLSA202115)supported by ISSI-BJsupported by the international joint research program of the Institute for Space-Earth Environmental Research at Nagoya University and JSPS KAKENHI,grant No.JP18H01253。
文摘The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions,including solar flares,coronal mass ejections,eruptive filaments,and various scales of jets.The different kinds of flares may have different characteristics of energy and spectral distribution.In this work,we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behaviour and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves,and X-ray observations of GOES,RHESSI,and Fermi/GBM.We found that:all the confined flare events were associated with a microwave continuum burst extending to frequencies of9.4~15.4 GHz,and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz.The median value is around 9 GHz.The microwave burst energy(or nuence)and the peak frequency are found to provide useful criteria to estimate the power of solar flares.The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al.(2004).All 10 events studied did not produce detectable hard X-rays with energies above~300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.
文摘Analysis of solar-cell array panel (SAP) data from the Arase satellite orbiting in the inner magnetosphere showed a clear degradation of solar cells that could be attributed to trapped protons with energies greater than 6 MeV. Proton fluence was determined based on variations in the open-circuit voltage (Voc) of the solar cells, which we compared with that expected based on various distribution models (AP8MAX, AP9 mean and CRRESPRO quiet) of trapped protons. We found a general agreement, confirming the major contribution of trapped protons to the degradation, as well as a slight difference in the fluence expected based on the model calculations. To minimize this difference, we slightly modified the models, and found that concentrating the energetic protons on the magnetic equator provided a better agreement. Our results indicate that >6 MeV protons also has the equatorial concentration as reported for >18 MeV protons from the Van Allen Probes observation, and are interpreted as two components of the trapped protons, i.e., those of solar energetic particle (SEP) origin have an anisotropic pitch-angle distribution and are confined near the magnetic equator.
文摘In the terrain following coordinate,Gal-Chen and Somerville[1]and other proposed a vertical coordinate z∝(z−z_(bottom))/(ztop−z_(bottom))and constant spatial intervals ofδx andδy along the other directions.Because the variation ofδx andδy was ignored,their coordinate does not really follow the terrain.It fails to reproduce the divergence and curl over a complex terrain.Aligning the coordinate with real terrain,the divergence and curl we obtained from the curvilinear coordinate are consistent with the Cartesian coordinate.With a modification,the simulated total mass,energy,and momentum from the Navier-Stokes equations are conserved and in agreement with those calculated from Cartesian coordinate.
基金support by the National Natural Science Foundation of China(Grant Nos.11821303 and 11761131004)supported by grants from the National Research Foundation of Korea(2019R1A2C2085965 and 2020R1A4A2002885)+3 种基金supported by JPL grant 1571564supported by JSPS KAK-ENHI(Grant Nos.JSPS24253004,JSPS26247023,JSPS23340064,JSPS15H00781,JP16H06287,JP17H02871 and JP19KK0082)supported by Tsinghua University Initiative Scientific Research Program(Program ID 2019Z07L02017)supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)under the funding(reference#CITA 490888-16)。
文摘We report the discovery of KMT-2020-BLG-0414 Lb,with a planet-to-host mass ratio q2=0.9-1.2×10-5=3-4 q⊕at 1σ,which is the lowest mass-ratio microlensing planet to date.Together with two other recent discoveries(4?q/q⊕?6),it fills out the previous empty sector at the bottom of the triangular(log s,log q)diagram,where s is the planet-host separation in units of the angular Einstein radiusθE.Hence,these discoveries call into question the existence,or at least the strength,of the break in the mass-ratio function that was previously suggested to account for the paucity of very low-q planets.Due to the extreme magnification of the event,Amax~1450 for the underlying single-lens event,its light curve revealed a second companion with q3~0.05 and|log s3|~1,i.e.,a factor~10 closer to or farther from the host in projection.The measurements of the microlens parallaxπE and the angular Einstein radiusθE allow estimates of the host,planet and second companion masses,(M1,M2,M3)~(0.3 M⊙,1.0 M⊕,17 MJ),the planet and second companion projected separations,(a⊥,2,a⊥,3)~(1.5,0.15 or 15)au,and system distance DL~1 kpc.The lens could account for most or all of the blended light(I~19.3)and so can be studied immediately with high-resolution photometric and spectroscopic observations that can further clarify the nature of the system.The planet was found as part of a new program of high-cadence follow-up observations of high-magnification events.The detection of this planet,despite the considerable difficulties imposed by COVID-19(two KMT sites and OGLE were shut down),illustrates the potential utility of this program.