期刊文献+
共找到507篇文章
< 1 2 26 >
每页显示 20 50 100
Aging Mongolian pine plantations face high risks of drought-induced growth decline:evidence from both individual tree and forest stand measurements
1
作者 Mingyong Li Leilei Yang +2 位作者 Yu Cao Dedong Wu Guangyou Hao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期109-120,共12页
Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An im... Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying. 展开更多
关键词 Tree age Drought stress Mongolian pine plantation Tree rings Remote sensing Plant hydraulics
下载PDF
Resilience and response:Unveiling the impacts of extreme droughts on forests through integrated dendrochronological and remote sensing analyses
2
作者 Han Shi Xi Peng +6 位作者 Yong-Jiao Zhou Ai-Ying Wang Xue-Kai Sun Na Li Quan-Sheng Bao Gude Buri Guang-You Hao 《Forest Ecosystems》 SCIE CSCD 2024年第4期491-501,共11页
Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patte... Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts.Here,we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak(native)natural forests and poplar plantations(introduced)in the Horqin Sandy Land,Northeast China.We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index.The results showed that precipitation and self-calibrated palmer drought severity index(scPDSI)are the major factors influencing tree-ring width index(RWI)and normalized difference vegetation index(NDVI).The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations.The RWI reached the nadir during the2000-2004 severe droughts and remained at low levels two years after the severe drought,creating a legacy effect.In contrast to the lack of significant correlation between RWI and scPDSI,NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth.Furthermore,interspecific differences in RWI and NDVI responses were observed,with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species,highlighting the species-specific trade-offs between drought resilience and growth rate.This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response.Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses,offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change. 展开更多
关键词 Introduced tree species Native tree species NDVI Severe drought Tree-ring width
下载PDF
Effect of land use on soil nematode community composition and co-occurrence network relationship
3
作者 Xiaotong Liu Siwei Liang +3 位作者 Yijia Tian Xiao Wang Wenju Liang Xiaoke Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2807-2819,共13页
Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,for... Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera. 展开更多
关键词 soil nematode trophic groups community composition co-occurrence network land use
下载PDF
Knock-in of exogenous sequences based on CRISPR/Cas9 targeting autosomal genes and sex chromosomes in the diamondback moth,Plutella xylostella
4
作者 Shanyu Li Guifang Lin +15 位作者 Haoqi Wen Haiyan Lu Anyuan Yin Chanqin Zheng Feifei Li Qingxuan Qiao Lu Jiao Ling Lin Yi Yan Xiujuan Xiang Huang Liao Huiting Feng Yussuf Mohamed Salum Minsheng You Wei Chen Weiyi He 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3089-3103,共15页
Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Px... Genetic pest control strategies based on precise sex separation and only releasing sterile males can be accomplished by site-specific genome editing.In the current study,we showed that the mutation of single-allele Pxfl(2)d can significantly impair the normal mating behavior and testis development in male adults of the notorious cruciferous insect pest Plutella xylostella,in addition to its known functions in the ovarian development in female adults and egg hatching.Subsequent CRISPR/Cas9-based knock-in experiments revealed that site-specific integration of an exogenous green fluorescent protein(GFP)gene into autosomal Pxfl(2)d for labelling mutants could be achieved.However,this gene is not a suitable target for GFP insertion to establish a genetically stable knock-in strain because of the severe decline in reproductive capacity.We further screened for the W-chromosome-linked and Z-chromosome-linked regions to test the knock-in efficiency mediated by CRISPR/Cas9.The results verified that both types of chromosomes can be targeted for the site-specific insertion of exogenous sequences.We ultimately obtained a homozygous knock-in strain with the integration of both Cas9 and cyan fluorescent protein(CFP)expression cassettes on a Z-linked region in P.xylostella,which can also be used for early sex detection.By injecting the sgRNA targeting Pxfl(2)d alone into the eggs laid by female adults of the Z-Cas9-CFP strain,the gene editing efficiency reached 29.73%,confirming the success of expressing a functional Cas9 gene.Taken together,we demonstrated the feasibility of the knock-in of an exogenous gene to different genomic regions in P.xylostella,while the establishment of a heritable strain required the positioning of appropriate sites.This study provides an important working basis and technical support for further developing genetic strategies for insect pest control. 展开更多
关键词 cruciferous specialist fl(2)d CRISPR/Cas9 KNOCK-IN sex chromosome
下载PDF
Degree of shade tolerance shapes seasonality of chlorophyll, nitrogen and phosphorus levels of trees and herbs in a temperate deciduous forest
5
作者 Jiajia Zeng Fan Liu +5 位作者 Yuan Zhu Jiayi Li Ying Ruan Xiankui Quan Chuankuan Wang Xingchang Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期60-72,共13页
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi... Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production. 展开更多
关键词 Leaf traits Leaf nutrients Seasonal variations CHLOROPHYLL Nitrogen Phosphorus Shade tolerance Canopy layers
下载PDF
Retention of harvest residues promotes the accumulation of topsoil organic carbon by increasing particulate organic carbon in a Chinese fir plantation
6
作者 Jiamin Yang Ke Huang +5 位作者 Xin Guan Weidong Zhang Renshan Li Longchi Chen Silong Wang Qingpeng Yang 《Forest Ecosystems》 SCIE CSCD 2024年第5期720-727,共8页
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled... Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management. 展开更多
关键词 Chinese fir plantation Soil organic carbon Particulate organic carbon Mineral-associated organic carbon Harvest residue management
下载PDF
Leaf habit differentiation explains trait tradeoffs across savanna woody plants
7
作者 Yangsiding Wang Da Yang +6 位作者 German Vargas G. Guangyou Hao Jennifer S.Powers Yan Ke Qin Wang Yunbing Zhang Jiaolin Zhang 《Forest Ecosystems》 SCIE CSCD 2024年第3期287-295,共9页
Identifying how leaf habit subdivisions link to the fast–slow and avoidance–tolerance trait tradeoffs can provide new insight into divergence in ecophysiological strategies among plant functional groups. Here, we te... Identifying how leaf habit subdivisions link to the fast–slow and avoidance–tolerance trait tradeoffs can provide new insight into divergence in ecophysiological strategies among plant functional groups. Here, we tested a hypothesis that the differentiation across deciduous, semi-deciduous and evergreen woody species contributes to physiological trait tradeoffs in a dry-hot valley savanna. We investigated 11 photosynthetic, morphological and hydraulic traits of 24 species including 8 deciduous, 10 semi-deciduous and 6 evergreen species. Deciduous species were grouped in the fast and avoidance side associated with high values of maximum photosynthetic rates,stomatal conductance and leaf size, while evergreen species were grouped in the slow and tolerance side associated with high photosynthetic water use efficiency, leaf mass per area, sapwood density, Huber value, leaf water potential at turgor loss point and water potential causing 50% loss of stem hydraulic conductance. Semideciduous species generally had intermediate trait values and represented different physiological characteristics when compared to deciduous and evergreen species. The physiological trait tradeoffs showed a close linkage to the differentiation of these three leaf habits. Our findings clearly reveal trait tradeoffs related to fast–slow and avoidance–tolerance strategies among diverse savanna plants, suggesting a syndrome in multiple ecophysiology strategies across different leaf habits. 展开更多
关键词 Dry-hot habitat Gas exchange Hydraulics PHENOLOGY Tolerance Valley savanna
下载PDF
Decline in tree-ring growth of Picea mongolica and its intra-annual eco-physiological responses to drought and CO_(2) enrichment in semi-arid China
8
作者 Xiaomin Zeng Ping Ni +3 位作者 Xiaohong Liu Wenzhi Wang Yao Li Wenchao Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期89-101,共13页
Episodes of drought-induced decline in tree growth and mortality are becoming more frequent as a result of climate warming and enhanced water stress in semi-arid areas.However,the ecophysiological mechanisms under-lyi... Episodes of drought-induced decline in tree growth and mortality are becoming more frequent as a result of climate warming and enhanced water stress in semi-arid areas.However,the ecophysiological mechanisms under-lying the impact of drought on tree growth remains unre-solved.In this study,earlywood and latewood tree-ring growth,δ^(13)C,andδ^(18)O chronologies of Picea mongolica from 1900 to 2013 were developed to clarify the intra-and inter-annual tree-ring growth responses to increasingly fre-quent droughts.The results indicate that annual basal area increment residuals(BAI_(res)),which removed tree age and size effects,have significantly decreased since 1960.How-ever,the decreasing trend of earlywood BAI_(res) was higher than that of latewood.Climate response analysis suggests that the dominant parameters for earlywood and latewood proxies(BAI_(res),δ^(13)C andδ^(18)O)were drought-related climate variables(Palmer drought severity index,temperature,rela-tive humidity,and vapor pressure deficit).The most signifi-cant period of earlywood and latewood proxies’responses to climate variables were focused on June-July and July-August,respectively.BAI_(res),andδ^(13)C were significantly affected by temperature and moisture conditions,whereasδ^(18)O was slightly affected.Decreasing stomatal conduct-ance due to drought outweighed the influence of increasing CO_(2) on intrinsic water use efficiency(iWUE),and ultimately led to a decline in BAI_(res).Compared to latewood,the faster decreasing BAI_(res) and smaller increasing iWUE of early-wood suggested trees were more vulnerable to water stress in the early growing season.Our study provides insights into the inter-and intra-annual mechanisms of tree-ring growth in semi-arid regions under rising CO_(2) and climate change. 展开更多
关键词 Tree growth DROUGHT Water-use efficiency Seasonal differences Stable isotopes
下载PDF
Stand biomass of Pinus sylvestris var. mongolica plantations benefits from high density monocultures in the boreal zone
9
作者 Bingming Chen Shensi Liu +8 位作者 Jinghua Yu Yanqing Huang Shuai Yu Huanchu Liu Tianyu Zhang Xiangdong Liu Guangze Jin Wei Chen Xingyuan He 《Forest Ecosystems》 SCIE CSCD 2024年第5期650-658,共9页
Pinus sylvestris var.mongolica(P.sylvestris)plantations are extensively established in the boreal zone.Increasing stand biomass of these plantations can effectively enhance carbon stock,which is crucial for mitigating... Pinus sylvestris var.mongolica(P.sylvestris)plantations are extensively established in the boreal zone.Increasing stand biomass of these plantations can effectively enhance carbon stock,which is crucial for mitigating climate change.However,the current understanding of optimizing plantation strategies to maximize stand biomass is primarily derived from experiments in tropical and subtropical zones,which is difficult to extend to the boreal due to substantial climatic differences.Based on a comprehensive dataset from 1,076 sample plots of P.sylvestris plantations in the boreal zone of China,we evaluated the effects of tree species richness and stand density on tree height,diameter at breast height(DBH),and stand biomass to investigate the optimal plantation strategy.Furthermore,we examined how these effects changed with stand age and investigated their relative importance.We found that monocultures at a high stand density of 2,000–2,500ha^(−1) were the optimal plantation strategy to maximize stand biomass(107.5Mg·ha^(−1)),and this held true at almost all stand ages.Unfortunately,this strategy resulted in low species richness and small individual trees(10.6m height and 9.8cm DBH),thus presenting a trade-off.In addition,as stand age increased,the effect of tree species richness on stand biomass shifted from positive to negative,but the effect of stand density was always positive.Overall,stand age had the greatest effect on stand biomass,followed by stand density and then tree species richness.Our findings reveal a distinct plantation strategy for optimizing stand biomass of P.sylvestris plantations in the boreal zone.More importantly,this study highlights that(1)maximizing stand biomass in the boreal zone may compromise tree species richness;(2)net effects of tree species richness on stand biomass are not always positive,as negative selection effects offset positive complementary effects. 展开更多
关键词 Boreal forests Cold region Forestry application Mongolian Scots pine Planting strategy Tree diversity
下载PDF
Belowground Bud Bank Is Insensitive to Short-Term Nutrient Addition in the Meadow Steppe of Inner Mongolia
10
作者 Jin Tao Jiatai Tian +6 位作者 Dongmei Li Jinlei Zhu Qun Ma Zhiming Zhang Jungang Chen Yipeng Liu Jianqiang Qian 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1129-1141,共13页
Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem fu... Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem functions,especially in nutrient-limited ecosystems.However,as the key propagule pool of perennial grasslands,how belowground bud bank and its relationship with aboveground vegetation respond to short-term changes in soil nutrients was still unclear.In this study,we conducted a short-term(2021–2022)soil fertilization experiment with N addition(10 g N m^(-2) yr^(-1))and P addition(5 g N m^(-2) yr^(-1))in the meadow steppe of Inner Mongolia,China,to explore the responses of belowground bud bank,aboveground shoot population and their relationships(represented by the ratio of bud to shoot density-meristem limitation index(MLI))for the whole community and three plant functional groups(perennial rhizomatous grasses-PR,perennial bunchgrasses-PB,and perennial forbs-PF)to nutrient addition.The short-term nutrient addition had no significant influences on belowground bud density,aboveground shoot density,and MLI of the whole plant community.Plant functional groups showed different responses to soil fertilization.Specifically,N addition significantly increased the bud density and shoot density of PR,especially in combination with P addition.N addition reduced the shoot density of PF but had no influence on its bud density and MLI.Nutrient addition had significant effects on the three indicators of PB.Our study indicates that the belowground bud bank and its relationship with aboveground vegetation in temperate meadow steppe are insensitive to short-term soil fertilization,but plant functional groups exhibit specific responses in terms of population regeneration,which implies that plant community composition and ecosystem functions will be changed under the ongoing global change. 展开更多
关键词 Clonal trait population regeneration community dynamics soil resource availability nitrogen addition
下载PDF
Urban Green Space Planning Based on Computational Fluid Dynamics Model and Landscape Ecology Principle:A Case Study of Liaoyang City,Northeast China 被引量:9
11
作者 ZHOU Yuan SHI Tiemao +4 位作者 HU Yuanman GAO Chang LIU Miao FU Shilei WANG Shizhe 《Chinese Geographical Science》 SCIE CSCD 2011年第4期465-475,共11页
As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using... As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using the computational fluid dynamics (CFD) model,landscape ecological principles and Geographical Information System (GIS).Based on the influencing factors of topography,building density and orientation,Shou Mountain,Longding Mountain and the Taizi River were selected as the urban ventilation paths to promote wind and oxygen circulation.Oxygen concentration around the green spaces gradually decreased with wind speed increase and wind direction change.There were obvious negative correlation relationships between the oxygen dispersion concentration and urban layout factors such as the building plot ratio and building density.Comparison with the field measurements found that there was significant correlation relationship between simulated oxygen concentration and field measurements (R 2=0.6415,p<0.001),moreover,simulation precision was higher than 92%,which indicated CFD model was effective for urban oxygen concentration simulation.Only less than 10% areas in Liaoyang City proper needed more green space urgently to improve oxygen concentration,mainly concentrated in Baitai and west Wensheng districts.Based on land-scape ecology principle,green space planning at different spatial scales were proposed to create a green space network system for Liaoyang City,including features such as green wedges,green belts and parks.Totally,about 2012 ha of green space need to be constructed as oxygen sources and ventilation paths.Compared with the current green space pattern,proposed green space planning could improve oxygen concentration obviously.The CFD model and research results in this paper could provide an effective way and theory support for sustainable development of urban green space. 展开更多
关键词 green space computational fluid dynamics oxygen dispersion pattern landscape ecology Liaoyang City proper
下载PDF
Multi-source Data-driven Identification of Urban Functional Areas:A Case of Shenyang,China 被引量:3
12
作者 XUE Bing XIAO Xiao +2 位作者 LI Jingzhong ZHAO Bingyu FU Bo 《Chinese Geographical Science》 SCIE CSCD 2023年第1期21-35,共15页
Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of ... Urban functional area(UFA)is a core scientific issue affecting urban sustainability.The current knowledge gap is mainly reflected in the lack of multi-scale quantitative interpretation methods from the perspective of human-land interaction.In this paper,based on multi-source big data include 250 m×250 m resolution cell phone data,1.81×105 Points of Interest(POI)data and administrative boundary data,we built a UFA identification method and demonstrated empirically in Shenyang City,China.We argue that the method we built can effectively identify multi-scale multi-type UFAs based on human activity and further reveal the spatial correlation between urban facilities and human activity.The empirical study suggests that the employment functional zones in Shenyang City are more concentrated in central cities than other single functional zones.There are more mix functional areas in the central city areas,while the planned industrial new cities need to develop comprehensive functions in Shenyang.UFAs have scale effects and human-land interaction patterns.We suggest that city decision makers should apply multi-sources big data to measure urban functional service in a more refined manner from a supply-demand perspective. 展开更多
关键词 human-land relationship multi-source big data urban functional area identification method Shenyang City
下载PDF
Effect of sand-fixing vegetation on the hydrological regulation function of sand dunes and its practical significance 被引量:2
13
作者 Alamusa SU Yuhang +2 位作者 YIN Jiawang ZHOU Quanlai WANG Yongcui 《Journal of Arid Land》 SCIE CSCD 2023年第1期52-62,共11页
Soil water content is a key controlling factor for vegetation restoration in sand dunes.The deep seepage and lateral migration of water in dunes affect the recharge process of deep soil water and groundwater in sand d... Soil water content is a key controlling factor for vegetation restoration in sand dunes.The deep seepage and lateral migration of water in dunes affect the recharge process of deep soil water and groundwater in sand dune ecosystems.To determine the influence of vegetation on the hydrological regulation function of sand dunes,we examined the deep seepage and lateral migration of dune water with different vegetation coverages during the growing season in the Horqin Sandy Land,China.The results showed that the deep seepage and lateral migration of water decreased with the increase in vegetation coverage on the dunes.The accumulated deep seepage water of mobile dunes(vegetation coverage<5%)and dunes with vegetation coverage of 18.03%,27.12%,and 50.65%accounted for 56.53%,51.82%,18.98%,and 0.26%,respectively,of the rainfall in the same period.The accumulated lateral migration of water in these dunes accounted for 12.39%,6.33%,2.23%,and 7.61%of the rainfall in the same period.The direction and position of the dune slope affected the soil water deep seepage and lateral migration process.The amounts of deep seepage and lateral migration of water on the windward slope were lower than those on the leeward slope.The amounts of deep seepage and lateral migration of water showed a decreasing trend from the bottom to the middle and to the top of the dune slope.According to the above results,during the construction of sand-control projects in sandy regions,we suggest that a certain area of mobile dunes(>13.75%)should be retained as a water resource reservoir to maintain the water balance of artificial fixed dune ecosystems.These findings provide reliable evidence for the accurate assessment of water resources within the sand dune ecosystem and guide the construction of desertification control projects. 展开更多
关键词 vegetation coverage hydrological regulation soil water deep seepage sand dune water balance desertification control
下载PDF
Accurate recognition of the reproductive development status and prediction of oviposition fecundity in Spodoptera frugiperda(Lepidoptera:Noctuidae)based on computer vision 被引量:1
14
作者 LÜChun-yang GE Shi-shuai +4 位作者 HE Wei ZHANG Hao-wen YANG Xian-ming CHU Bo WU Kong-ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2173-2187,共15页
Spodoptera frugiperda(Lepidoptera:Noctuidae)is an important migratory agricultural pest worldwide,which has invaded many countries in the Old World since 2016 and now poses a serious threat to world food security.The ... Spodoptera frugiperda(Lepidoptera:Noctuidae)is an important migratory agricultural pest worldwide,which has invaded many countries in the Old World since 2016 and now poses a serious threat to world food security.The present monitoring and early warning strategies for the fall army worm(FAW)mainly focus on adult population density,but lack an information technology platform for precisely forecasting the reproductive dynamics of the adults.In this study,to identify the developmental status of the adults,we first utilized female ovarian images to extract and screen five features combined with the support vector machine(SVM)classifier and employed male testes images to obtain the testis circular features.Then,we established models for the relationship between oviposition dynamics and the developmental time of adult reproductive organs using laboratory tests.The results show that the accuracy of female ovary development stage determination reached 91%.The mean standard error(MSE)between the actual and predicted values of the ovarian developmental time was 0.2431,and the mean error rate between the actual and predicted values of the daily oviposition quantity was 12.38%.The error rate for the recognition of testis diameter was 3.25%,and the predicted and actual values of the testis developmental time in males had an MSE of 0.7734.A WeChat applet for identifying the reproductive developmental state and predicting reproduction of S.frugiperda was developed by integrating the above research results,and it is now available for use by anyone involved in plant protection.This study developed an automated method for accurately forecasting the reproductive dynamics of S.frugiperda populations,which can be helpful for the construction of a population monitoring and early warning system for use by both professional experts and local people at the county level. 展开更多
关键词 Spodoptera frugiperda computer vision OVARY TESTIS WeChat applet
下载PDF
Allocation patterns of nonstructural carbohydrates in response to CO_(2)elevation and nitrogen deposition in Cunninghamia lanceolata saplings 被引量:1
15
作者 Wenhui Zheng Renshan Li +7 位作者 Qingpeng Yang Weidong Zhang Ke Huang Xin Guan Longchi Chen Xin Yu Qingkui Wang Silong Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期87-98,共12页
Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function... Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function and whole-plant level C cycling.CO_(2)elevation and nitrogen(N)deposition,which are two major environmental issues worldwide,aff ect plant photosynthetic C assimilation and C release in forest ecosystems.However,information regarding the eff ect of CO_(2)elevation and N deposition on NSC storage in diff erent organs remains limited,especially regarding the trade-off between growth and NSC reserves.Therefore,here we analyzed the variations in the NSC storage in diff erent organs of Chinese fi r(Cunninghamia lanceolata)under CO_(2)elevation and N addition and found that NSC concentrations and contents in all organs of Chinese fi r saplings increased remarkably under CO_(2)elevation.However,N addition induced diff erential accumulation of NSC among various organs.Specifi cally,N addition decreased the NSC concentrations of needles,branches,stems,and fi ne roots,but increased the NSC contents of branches and coarse roots.The increase in the NSC contents of roots was more pronounced than that in the NSC content of aboveground organs under CO_(2)elevation.The role of N addition in the increase in the structural biomass of aboveground organs was greater than that in the increase in the structural biomass of roots.This result indicated that a diff erent tradeoff between growth and NSC storage occurred to alleviate resource limitations under CO_(2)elevation and N addition and highlights the importance of separating biomass into structural biomass and NSC reserves when investigating the eff ects of environmental change on biomass allocation. 展开更多
关键词 Biomass partition CO_(2)elevation N deposition Nonstructural carbohydrates Structural biomass
下载PDF
Thoughts of a travelling ecologist 13.Numbers,rates,ecology
16
作者 Gabor L.LOVEI 《生物安全学报》 2018年第2期77-79,共3页
Numbers and rates are important in ecology.I almost hear you say:"Ehem,and what's news in this?Have you never seen an insect outbreak and its following collapse?"So the starting statement may seem either... Numbers and rates are important in ecology.I almost hear you say:"Ehem,and what's news in this?Have you never seen an insect outbreak and its following collapse?"So the starting statement may seem either pompous but obvious,or sneakily provocative,so that I could lament about the lack of mathematical lit- 展开更多
关键词 生态学家 旅行 评价 数字和 昆虫
下载PDF
The amelioration of degraded larch(Larix olgensis)soil depends on the proportion of Aralia elata litter in larch-A.elata agroforestry systems
17
作者 Pingzhen Gao Jiaojun Zhu +2 位作者 Qiaoling Yan Kai Yang Jinxin Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期1065-1076,共12页
Research has indicated that introducing Aralia elata into larch plantations forms an agroforestry system which could provide economic benefi ts for local farmers and improve degraded soils.However,the impact of litter... Research has indicated that introducing Aralia elata into larch plantations forms an agroforestry system which could provide economic benefi ts for local farmers and improve degraded soils.However,the impact of litter mixtures on soil chemical and microbial properties in this agroforestry system are unclear,which limits effi cient management of the agroforestry system.A 365-d incubation experiment examined the eff ect of litter mixtures of diff erent proportions of larch(L)and A.elata(A)on soil chemical and microbial properties.The results show that levels of mineral N,available P,microbial biomass carbon and nitrogen,cumulative C mineralization,and activities of hydrolases and oxidases increased with an increase of A.elata in the litter mixtures.Concentration of total soil carbon,nitrogen,and phosphorous did not change(except for total nitrogen).Compared with larch litter alone,levels of mineral N,available P,microbial biomass carbon and nitrogen,cumulative C mineralization,and the activities of hydrolases and oxidases increased by 7.6–433.5%.Most chemical and microbial properties were positively correlated with mixed litter proportions and the initial levels of N,P,K,Ca,Mg,Mn,Zn and Cu in the litter,while negatively correlated with the initial concentrations of C,Fe and lignin,C/N and lignin/N ratios.The results indicate that A.elata litter can improve degraded larch soil and the degree depends on the proportion of A.elata litter in the litter mixtures. 展开更多
关键词 Larch-based agroforestry Incubation experiment Litter mixtures Litter quality Soil properties
下载PDF
Modelling the dead fuel moisture content in a grassland of Ergun City,China
18
作者 CHANG Chang CHANG Yu +1 位作者 GUO Meng HU Yuanman 《Journal of Arid Land》 SCIE CSCD 2023年第6期710-723,共14页
The dead fuel moisture content(DFMC)is the key driver leading to fire occurrence.Accurately estimating the DFMC could help identify locations facing fire risks,prioritise areas for fire monitoring,and facilitate timel... The dead fuel moisture content(DFMC)is the key driver leading to fire occurrence.Accurately estimating the DFMC could help identify locations facing fire risks,prioritise areas for fire monitoring,and facilitate timely deployment of fire-suppression resources.In this study,the DFMC and environmental variables,including air temperature,relative humidity,wind speed,solar radiation,rainfall,atmospheric pressure,soil temperature,and soil humidity,were simultaneously measured in a grassland of Ergun City,Inner Mongolia Autonomous Region of China in 2021.We chose three regression models,i.e.,random forest(RF)model,extreme gradient boosting(XGB)model,and boosted regression tree(BRT)model,to model the seasonal DFMC according to the data collected.To ensure accuracy,we added time-lag variables of 3 d to the models.The results showed that the RF model had the best fitting effect with an R2value of 0.847 and a prediction accuracy with a mean absolute error score of 4.764%among the three models.The accuracies of the models in spring and autumn were higher than those in the other two seasons.In addition,different seasons had different key influencing factors,and the degree of influence of these factors on the DFMC changed with time lags.Moreover,time-lag variables within 44 h clearly improved the fitting effect and prediction accuracy,indicating that environmental conditions within approximately 48 h greatly influence the DFMC.This study highlights the importance of considering 48 h time-lagged variables when predicting the DFMC of grassland fuels and mapping grassland fire risks based on the DFMC to help locate high-priority areas for grassland fire monitoring and prevention. 展开更多
关键词 dead fuel moisture content(DFMC) random forest(RF)model extreme gradient boosting(XGB)model boosted regression tree(BRT)model GRASSLAND Ergun City
下载PDF
Coupling outdoor air quality with thermal comfort in the presence of street trees:a pilot investigation in Shenyang,Northeast China
19
作者 Chunping Miao Pingping Li +3 位作者 Yanqing Huang Yuxuan Sun Wei Chen Shuai Yu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期831-839,共9页
Together,the heat island eff ect and air pollution pose a threat to human health and well-being in urban settings.Nature-based solutions such as planting trees are a mitigation strategy to improve outdoor temperatures... Together,the heat island eff ect and air pollution pose a threat to human health and well-being in urban settings.Nature-based solutions such as planting trees are a mitigation strategy to improve outdoor temperatures(thermal comfort)and enhance air quality in urban areas.In this study,outdoor thermal comfort,and particulate matter levels were compared between treeless and treed areas to provide a better understanding of how street trees improve thermal comfort and air quality.Street trees decreased the physiological equivalent temperature from 46.3 to 44.2℃in summer but increased it from 36.4 to 37.5℃in autumn.Air temperature and relative humidity contributed more in summer while wind speed contributed more in autumn.Particulate matter concentrations were negatively correlated with physiological equivalent temperature in summer but not in autumn.The presence of trees decreased concentrations of fi ne particulate matter in hot summer conditions but increased in hot autumn conditions.The presence of trees increased coarse particulate matter in very hot summer conditions in summer and in hot autumn conditions.Overall,the layout of trees in urban street canyons should consider the trade-off between outdoor thermal comfort and air quality improvement. 展开更多
关键词 Air pollution Particulate matter(PM) Physiological equivalent temperature(PET) Built environment Urban design
下载PDF
Correction to:The amelioration of degraded larch(Larix olgensis)soil depends on the proportion of Aralia elata litter in larch-A.elata agroforestry systems
20
作者 Pingzhen Gao Jiaojun Zhu +2 位作者 Qiaoling Yan Kai Yang Jinxin Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1649-1649,共1页
Correction to:J.For.Res.https://doi.org/10.1007/s11676-022-01526-w The article“The amelioration of degraded larch(Larix olgensis)soil depends on the proportion of Aralia elata litter in larch-A.elata agroforestry sys... Correction to:J.For.Res.https://doi.org/10.1007/s11676-022-01526-w The article“The amelioration of degraded larch(Larix olgensis)soil depends on the proportion of Aralia elata litter in larch-A.elata agroforestry systems”,written by Pingzhen Gao·Jiaojun Zhu·Qiaoling Yan·Kai Yang and Jinxin Zhang was originally published Online First without Open Access. 展开更多
关键词 SOIL LARCH elata
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部