Future quantum technology relies crucially on building quantum networks with high fidelity.To achieve this challenging goal,it is of utmost importance to connect individual quantum systems such that their emitted sing...Future quantum technology relies crucially on building quantum networks with high fidelity.To achieve this challenging goal,it is of utmost importance to connect individual quantum systems such that their emitted single photons overlap with the highest possible degree of coherence.This requires perfect mode overlap of the emitted light from different emitters,which necessitates the use of single-mode fibres.Here,we present an advanced manufacturing approach to accomplish this task.We combined 3D printed complex micro-optics,such as hemispherical and Weierstrass solid immersion lenses,as well as total internal reflection solid immersion lenses,on top of individual indium arsenide quantum dots with 3D printed optics on single-mode fibres and compared their key features.We observed a systematic increase in the collection efficiency under variations of the lens geometry from roughly 2 for hemispheric solid immersion lenses up to a maximum of greater than 9 for the total internal reflection geometry.Furthermore,the temperature-induced stress was estimated for these particular lens dimensions and results to be approximately 5 meV.Interestingly,the use of solid immersion lenses further increased the localisation accuracy of the emitters to less than 1 nm when acquiring micro-photoluminescence maps.Furthermore,we show that the single-photon character of the source is preserved after device fabrication,reaching a g^((2))(0)value of approximately 0.19 under pulsed optical excitation.The printed lens device can be further joined with an optical fibre and permanently fixed.This integrated system can be cooled by dipping into liquid helium using a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows,as all access is through the integrated single-mode fibre.We identify the ideal optical designs and present experiments that demonstrate excellent high-rate single-photon emission.展开更多
Preclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes.Miniaturized endoscopic probes are necessary for imaging small luminal or delicate or...Preclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes.Miniaturized endoscopic probes are necessary for imaging small luminal or delicate organs without causing trauma to tissue.However,current fabrication methods limit the imaging performance of highly miniaturized probes,restricting their widespread application.To overcome this limitation,we developed a novel ultrathin probe fabrication technique that utilizes 3D microprinting to reliably create side-facing freeform micro-optics(<130μm diameter)on single-mode fibers.Using this technique,we built a fully functional ultrathin aberration-corrected optical coherence tomography probe.This is the smallest freeform 3D imaging probe yet reported,with a diameter of 0.457 mm,including the catheter sheath.We demonstrated image quality and mechanical flexibility by imaging atherosclerotic human and mouse arteries.The ability to provide microstructural information with the smallest optical coherence tomography catheter opens a gateway for novel minimally invasive applications in disease.展开更多
基金We acknowledge the financial support of the German Federal Ministry of Science and Education[Bundesministerium fur Bildung und Forschung(BMBF)]via the projects Printoptics,Printfunction,and Q.link.X 16KIS0862support via the project EMPIR 17FUN06 SIQUST+1 种基金This project received funding from Baden-Württemberg-Stiftung via the Opterial projectThis project received funding from the EMPIR programme co-financed by the participating states and from the European Union’s Horizon 2020 research and innovation programme.Furthermore,funding was received from the European Research Council(ERC)via the projects AdG ComplexPlas and PoC 3D PrintedOptics.It was also funded by the Deutsche Forschungsgemeinschaft(DFG)via the projects SPP1839,SPP1929,GRK2642,as well as the Center for Integrated Quantum Science and Technology(IQST).
文摘Future quantum technology relies crucially on building quantum networks with high fidelity.To achieve this challenging goal,it is of utmost importance to connect individual quantum systems such that their emitted single photons overlap with the highest possible degree of coherence.This requires perfect mode overlap of the emitted light from different emitters,which necessitates the use of single-mode fibres.Here,we present an advanced manufacturing approach to accomplish this task.We combined 3D printed complex micro-optics,such as hemispherical and Weierstrass solid immersion lenses,as well as total internal reflection solid immersion lenses,on top of individual indium arsenide quantum dots with 3D printed optics on single-mode fibres and compared their key features.We observed a systematic increase in the collection efficiency under variations of the lens geometry from roughly 2 for hemispheric solid immersion lenses up to a maximum of greater than 9 for the total internal reflection geometry.Furthermore,the temperature-induced stress was estimated for these particular lens dimensions and results to be approximately 5 meV.Interestingly,the use of solid immersion lenses further increased the localisation accuracy of the emitters to less than 1 nm when acquiring micro-photoluminescence maps.Furthermore,we show that the single-photon character of the source is preserved after device fabrication,reaching a g^((2))(0)value of approximately 0.19 under pulsed optical excitation.The printed lens device can be further joined with an optical fibre and permanently fixed.This integrated system can be cooled by dipping into liquid helium using a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows,as all access is through the integrated single-mode fibre.We identify the ideal optical designs and present experiments that demonstrate excellent high-rate single-photon emission.
基金funded by the Australian Research Council(CE140100003)a Premier’s Research and Industry Fund grant provided by the South Australian Government Department for Industry and Skills+5 种基金BMBF PRINTOPTICS(13N14096,13N14097),Baden-Wurttemberg(BW)Stiftung OPTERIAL,European Research Council Advanced Grant COMPLEXPLAS,European Research Council Proof of Concept 3DPrintedOptics,and German Research Foundation(DFG)Integrated quantum science and technology(IQST)the National Health and Medical Research Council(NHMRC,Principle Research Fellowship 1111630)the National Heart Foundation(Lin Huddleston Senior Fellowship,and Postdoctoral Fellowship 102093)the University of Adelaide(Faculty of Health and Medical Sciences Emerging Leadership Program grant and Research Travel Award)Australia-Germany Joint Research Co-operation Scheme(UA-DAAD).
文摘Preclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes.Miniaturized endoscopic probes are necessary for imaging small luminal or delicate organs without causing trauma to tissue.However,current fabrication methods limit the imaging performance of highly miniaturized probes,restricting their widespread application.To overcome this limitation,we developed a novel ultrathin probe fabrication technique that utilizes 3D microprinting to reliably create side-facing freeform micro-optics(<130μm diameter)on single-mode fibers.Using this technique,we built a fully functional ultrathin aberration-corrected optical coherence tomography probe.This is the smallest freeform 3D imaging probe yet reported,with a diameter of 0.457 mm,including the catheter sheath.We demonstrated image quality and mechanical flexibility by imaging atherosclerotic human and mouse arteries.The ability to provide microstructural information with the smallest optical coherence tomography catheter opens a gateway for novel minimally invasive applications in disease.