期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
High Conduction Band Inorganic Layers for Distinct Enhancement of Electrical Energy Storage in Polymer Nanocomposites 被引量:3
1
作者 Yingke Zhu Zhonghui Shen +4 位作者 Yong Li Bin Chai Jie Chen Pingkai Jiang Xingyi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期221-236,共16页
Dielectric polymer nanocomposites are considered as one of the most promising candidates for high-power-density electrical energy storage applications.Inorganic nanofillers with high insulation property are frequently... Dielectric polymer nanocomposites are considered as one of the most promising candidates for high-power-density electrical energy storage applications.Inorganic nanofillers with high insulation property are frequently introduced into fluoropolymer to improve its breakdown strength and energy storage capability.Normally,inorganic nanofillers are thought to introducing traps into polymer matrix to suppress leakage current.However,how these nanofillers effect the leakage current is still unclear.Meanwhile,high dopant(>5 vol%)is prerequisite for distinctly improved energy storage performance,which severely deteriorates the processing and mechanical property of polymer nanocomposites,hence brings high technical complication and cost.Herein,boron nitride nanosheet(BNNS)layers are utilized for substantially improving the electrical energy storage capability of polyvinylidene fluoride(PVDF)nanocomposite.Results reveal that the high conduction band minimum of BNNS produces energy barrier at the interface of adjacent layers,preventing the electron in PVDF from passing through inorganic layers,leading to suppressed leakage current and superior breakdown strength.Accompanied by improved Young’s modulus(from 1.2 GPa of PVDF to 1.6 GPa of nanocomposite),significantly boosted discharged energy density(14.3 J cm^(-3)) and charge-discharge efficiency(75%)are realized in multilayered nanocomposites,which are 340 and 300% of PVDF(4.2 J cm^(-3),25%).More importantly,thus remarkably boosted energy storage performance is accomplished by marginal BNNS.This work offers a new paradigm for developing dielectric nanocomposites with advanced energy storage performance. 展开更多
关键词 Boron nitride nanosheet Conduction band EFFICIENCY Energy density BARRIER
下载PDF
恩施地区硒茶的元素及元素结合态分析 被引量:6
2
作者 谢明勇 曹春阳 +2 位作者 温辉梁 A.von Bohlen K.Guenther 《营养学报》 CAS CSCD 北大核心 2000年第3期278-281,共4页
关键词 茶叶 元素 元素结合态 全反射X线荧光法
下载PDF
Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries 被引量:18
3
作者 Qi Kang Yong Li +4 位作者 Zechao Zhuang Dingsheng Wang Chunyi Zhi Pingkai Jiang Xingyi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期194-204,I0006,共12页
Solid polymer electrolytes (SPEs) are urgently required for achieving practical all-solid-state lithium metal batteries (ASSLMBs) but remain plagued by low ionic conductivity.Herein,we propose a strategy of salt polar... Solid polymer electrolytes (SPEs) are urgently required for achieving practical all-solid-state lithium metal batteries (ASSLMBs) but remain plagued by low ionic conductivity.Herein,we propose a strategy of salt polarization to fabricate a highly ion-conductive SPE by employing a high-dielectric polymer that can interact strongly with lithium salts.Such a polymer with large dipole moments can guide lithium cations (Li^(+)) to be arranged along the chain,forming a continuous pathway for Li^(+) hopping within the SPE.The as-fabricated SPE,poly(vinylidene difluoride)(PVDF)-LiN(SO_(2)F)_(2)(LiFSI),has an extraordinarily high dielectric constant (up to 10^(8)) and ultrahigh ionic conductivity (0.77×10^(-3)S cm^(-1)).Based on the PVDF–LiFSI SPE,the assembled Li metal symmetrical cell shows excellent Li plating/stripping reversibility at 0.1 m A cm^(-2),0.1 m Ah cm^(-2)over 1500 h^(-1) the ASS LiFePO_(4) batteries deliver long-term cycling stability at 1 C over 350 cycles (2.74 mg cm^(-2)) and an ultralong cycling lifespan of over 2600 h(100 cycles) with high loading (11.5 mg cm^(-2)) at 28°C.First-principles calculations further reveal the ion-dipole interactions-controlled conduction of Li^(+) in PVDF–LiFSI SPE along the PVDF chain.This work highlights the critical role of dielectric permittivity in SPE,and provides a promising path towards high-energy,long-cycling lifespan ASSLMBs. 展开更多
关键词 Salt polarization High dielectric High-loading ALL-SOLID-STATE Lithium metal battery 2600 h lifespan
下载PDF
Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal-Oxygen Covalency Enables Efficient Oxygen Evolution 被引量:1
4
作者 Jiexin Zhu Shikun Li +7 位作者 Zechao Zhuang Shan Gao Xufeng Hong Xuelei Pan Ruohan Yu Liang Zhou Lyudmila V.Moskaleva Liqiang Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期231-237,共7页
Exploring efficient,cost-effective,and durable electrocatalysts for electrochemical oxygen evolution reaction(OER)is pivotal for the large-scale application of water electrolysis.Recent advance has demonstrated that t... Exploring efficient,cost-effective,and durable electrocatalysts for electrochemical oxygen evolution reaction(OER)is pivotal for the large-scale application of water electrolysis.Recent advance has demonstrated that the activity of electrocatalysts exhibits a strong dependence on the surface electronic structure.Herein,a series of ultrathin metal silicate hydroxide nanosheets(UMSHNs)M_(3)Si_(2)O_(5)(OH)_(4)(M=Fe,Co,and Ni)synthesized without surfactant are introduced as highly active OER electrocatalysts.Cobalt silicate hydroxide nanosheets show an optimal OER activity with overpotentials of 287 and 358 m V at 1 and 10 m A cm^(-2),respectively.Combining experimental and theoretical studies,it is found that the OER activity of UMSHNs is dominated by the metal-oxygen covalency(MOC).High OER activity can be achieved by having a moderate MOC as reflected by aσ^(*)-orbital(e_(g))filling near unity and moderate[3d]/[2p]ratio.Moreover,the UMSHNs exhibit favorable chemical stability under oxidation potential.This contribution provides a scientific guidance for further development of active metal silicate hydroxide catalysts. 展开更多
关键词 electrocatalysis metal silicate hydroxide metal-oxygen covalency oxygen evolution reaction ultrathin nanosheet
下载PDF
Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge 被引量:22
5
作者 Zechao Zhuang Yong Li +7 位作者 Jiazhao Huang Zilan Li Kangning Zhao Yunlong Zhao Lin Xu Liang Zhou Lyudmila V. Moskaleva Liqiang Mai 《Science Bulletin》 SCIE EI CAS CSCD 2019年第9期617-624,共8页
Nonmetal elements strictly govern the electrochemical performance of molybdenum compounds.Yet,the exact role played by nonmetals during electrocatalysis remains largely obscure.With intermetallic MoSi_2comprising sili... Nonmetal elements strictly govern the electrochemical performance of molybdenum compounds.Yet,the exact role played by nonmetals during electrocatalysis remains largely obscure.With intermetallic MoSi_2comprising silicene subunits,we present an unprecedented hydrogen evolution reaction(HER)behavior in aqueous alkaline solution.Under continuous operation,the HER activity of MoSi_2shows a more than one order of magnitude improvement in current density from 1.1 to 21.5 mA cm^(à2)at 0.4 V overpotential.Meanwhile,this activation behavior is highly reversible,such that voltage withdrawal leads to catalyst inactivation but another operation causes reactivation.Thus,the system shows dynamics strikingly analogous to the legendary Sisyphus’labor,which drops and recovers in a stepwise manner repeatedly,but never succeeds in reaching the top of the mountain.Isomorphic WSi_2behaves almost the same as MoSi_2,whereas other metal silicides with silicyne subunits,including CrSi_2and TaSi_2,do not exhibit any anomalous behavior.A thin amorphous shell of MoSi_2is observed after reaction,within which the Si remains partially oxidized while the oxidation state of Mo is basically unchanged.First-principles calculations further reveal that the adsorption of hydroxide ions on silicene subunit edges and the subsequent Si vacancy formation in MoSi_2jointly lead to the anomalous HER kinetics of the adjacent Mo active centers.This work demonstrates that the role of nonmetal varies dramatically with the electronic and crystallographic structures of silicides and that silicene structural subunit may serve as a promoter for boosting HER in alkaline media. 展开更多
关键词 Sisyphus effect ELECTROCHEMISTRY Metal SILICIDES SILICENE SUBUNIT HYDROGEN evolution REACTION
原文传递
Manipulating dielectric property of polymer coatings toward highretention-rate lithium metal full batteries under harsh critical conditions 被引量:8
6
作者 Qi Kang Zechao Zhuang +8 位作者 Yong Li Yinze Zuo Jian Wang Yijie Liu Chaoqun Shi Jie Chen Hongfei Li Pingkai Jiang Xingyi Huang 《Nano Research》 SCIE EI CSCD 2023年第7期9240-9249,共10页
Lithium(Li)metal batteries(LMBs)can potentially deliver much higher energy density but remain plagued by uncontrollable Li plating with dendrite growth,unstable interfaces,and highly abundant excess Li(>50 mAh·... Lithium(Li)metal batteries(LMBs)can potentially deliver much higher energy density but remain plagued by uncontrollable Li plating with dendrite growth,unstable interfaces,and highly abundant excess Li(>50 mAh·cm^(-2)).Herein,different from the artificial layer or three-dimensional(3D)matrix host constructions,various dielectric polymers are initially well-comprehensively investigated from experimental characterizations to theoretical simulation to evaluate their functions in modulating Li ion distribution.As a proof of concept,a 3D interwoven high dielectric functional polymer(HDFP)nanofiber network with polar C-F dipole moments electrospun on copper(Cu)foil is designed,realizing uniform and controllable Li deposition capacity up to 5.0 mAh·cm^(-2),thereby enabling stable Li plating/stripping cycling over 1400 h at 1.0 mA·cm^(-2).More importantly,under the highcathode loading(~3.1 mAh·cm^(-2))and only 0.6×excess Li(N/P ratio of 1.6),the full cells retain capacity retention of 97.4%after 200 cycles at 3.36 mA·cm^(-2)and achieve high energy density(297.7 Wh·kg^(-1)at cell-level)under lean electrolyte conditions(15μL),much better than ever-reported literatures.Our work provides a new direction for designing high dielectric polymer coating toward high-retention-rate practical Li full batteries. 展开更多
关键词 high dielectric functional polymer NANOFIBER Li metal full cell low N/P ratio high-retention capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部