Two copolymers of P1 and P2 comprising benzothiadiazole, 1,4-bis(dodecyloxy)-benzene units were synthesized by Sonogashira coupling polymerization based on ethynyl-linked 1,2,5,6-naphthalenediimide. Their thermal, o...Two copolymers of P1 and P2 comprising benzothiadiazole, 1,4-bis(dodecyloxy)-benzene units were synthesized by Sonogashira coupling polymerization based on ethynyl-linked 1,2,5,6-naphthalenediimide. Their thermal, optical, electrochemical as well as charge transport properties were studied. Bottom-gate top-contact organic field-effect transistors (OFETs) measurements of P1 and P2 thin films showed different charge transport behaviors. P1 displayed pure electron transport behaviors in OFETs with electron mobility up to 10^-3 cm^2·V-1·s^-1, while P2 exhibited hole transport features. The molecular structure analysis revealed that the structure of P1 has the acceptor-linker-acceptor' (A-L-A') characteristic, and P2 possesses the donor-linker-acceptor (D-L-A) structure feature. The results demonstrate that different molecular structures lead them to have distinct charge transport behaviors. In particular, the first pure electron transport copolymer in OFETs based on 1,2,5,6-naphthalenediimide is achieved.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21674126)the"Strategic Priority Research Program"(No.XDB12010100)the Shanghai Science and Technology Committee(No.16JC1400603)
文摘Two copolymers of P1 and P2 comprising benzothiadiazole, 1,4-bis(dodecyloxy)-benzene units were synthesized by Sonogashira coupling polymerization based on ethynyl-linked 1,2,5,6-naphthalenediimide. Their thermal, optical, electrochemical as well as charge transport properties were studied. Bottom-gate top-contact organic field-effect transistors (OFETs) measurements of P1 and P2 thin films showed different charge transport behaviors. P1 displayed pure electron transport behaviors in OFETs with electron mobility up to 10^-3 cm^2·V-1·s^-1, while P2 exhibited hole transport features. The molecular structure analysis revealed that the structure of P1 has the acceptor-linker-acceptor' (A-L-A') characteristic, and P2 possesses the donor-linker-acceptor (D-L-A) structure feature. The results demonstrate that different molecular structures lead them to have distinct charge transport behaviors. In particular, the first pure electron transport copolymer in OFETs based on 1,2,5,6-naphthalenediimide is achieved.