期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SURFACE MODIFICATION OF PVDF POROUS MEMBRANES 被引量:1
1
作者 Jian-hua Li Jing Miao +2 位作者 Xi-sheng Shao 徐又一 Qi-qing Zhang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第7期994-1001,共8页
A novel method for the surface modification of PVDF porous membranes was introduced. Styrene-(N-(4- hydroxyphenyl) maleimide) alternating copolymer SHMI-Br was blended with PVDF to fabricate SHMI-Br/PVDF membranes... A novel method for the surface modification of PVDF porous membranes was introduced. Styrene-(N-(4- hydroxyphenyl) maleimide) alternating copolymer SHMI-Br was blended with PVDF to fabricate SHMI-Br/PVDF membranes. The C-Br bond on the SHMI-Br/PVDF membrane was served as initial site of ATRP, and P(PEGMA) brush was grafted on the PVDF membrane. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR/FTIR) was used to prove the P(PEGMA) brushes were successfully grafted onto the SHMI-Br/PVDF membrane surface. Introduction of P(PEGMA) brushes on the PVDF membrane surface enhanced the hydrophilicity effectively. When the PEGMA degree of grafting was 16.7 wt%, the initial contact angle of PVDF membrane decreased from 98° to 42°. The anti-fouling ability of PVDF membrane was improved significantly after P(PEGMA) brush was ~afted. Taking the PEGMA degree of grafting 16.7 wt% as an example, the flux of protein solution was about 151.21 L/(m h) when the pH value of the BSA solution was 4.9. As the pH value was increased to 7.4, the flux was changed to 180.06 L/(m2 h). However, the protein solution flux of membrane M3 (PEGMA: 0 wt%) was only 73.84 L/(m2 h) and 113.52 L/(m2 h) at pH 4.9 and 7.4, respectively. 展开更多
关键词 PVDF membrane SHMI-Br Surface modification HYDROPHILICITY Anti-fouling ability.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部