According to the year of 2009, calculated energy consumption quantity and energy consumption structure of building in Guangzhou to 2030, analyzed adjustment and approach of sustainable development and potential of ene...According to the year of 2009, calculated energy consumption quantity and energy consumption structure of building in Guangzhou to 2030, analyzed adjustment and approach of sustainable development and potential of energy conservation which can provide commendable technology progress in every department.展开更多
Building air conditioning systems(ACs)can contribute to the stable operation of power grids by participating in peak load shaving programs,but the participants need a fast and accurate zone temperature prediction mode...Building air conditioning systems(ACs)can contribute to the stable operation of power grids by participating in peak load shaving programs,but the participants need a fast and accurate zone temperature prediction model,e.g.,the detailed room thermal-resistance(RC)model,to improve peak shaving effect and avoid obvious thermal discomfort.However,when applying the detailed room RC model to multi-zone buildings,conventional studies mostly consider the heat transfer among neighboring rooms,which contributes little to the prediction accuracy improvement,but leads to complicated model structure and heavy computation.Thus,a distributed RC model is developed for multi-zone buildings in this study.Compared to conventional models,the proposed model considers the total heat transfer between the building and the air,and ignores the heat transfer among indoor air in neighboring rooms through internal walls with heavy thermal mass,thereby having comparable temperature prediction accuracy,simpler structure,and stronger robustness.Based on the model,the effectiveness of passive pre-cooling strategies in reducing the air conditioning loads during peak periods is investigated.Results indicate that the thermal insulation performance of opaque building envelope is quite important to the flexibility enhancement of air conditioning loads.With an uninsulated building envelope,passive pre-cooling is useless for the peak load shaving.In comparison,well insulated opaque building envelope enables the building thermal mass to be utilized through passive pre-cooling,which leads to the air conditioning loads during peak periods being further reduced by about 12%.展开更多
Variable air volume air-conditioning system(VAV system)has multiple control loops that interfered with each other,which has serious impacts on its actual operation effect.To solve this problem,the index of global hydr...Variable air volume air-conditioning system(VAV system)has multiple control loops that interfered with each other,which has serious impacts on its actual operation effect.To solve this problem,the index of global hydraulic stability,which takes the physical quantity of the pipe network pressure and the air flow rate as reference,is proposed based on Graph theory,and a pipe network model for the hydraulic calculation is built.Then,the simulation study based on the actual operation data is carried out in MATLAB.The distribution of the pressure and the air flow in the pipe network is obtained,and the action interferences among adjacent terminal boxes are analyzed based on global hydraulic stability under damper position regulation strategy(DP strategy)and fan frequency regulation strategy(FF strategy).Results indicate that the FF strategy can decrease the total change distance of the damper position compared with the DP strategy,and then the fluctuation of the pressure and the air flow can be reduced.The contribution of this study is to provide an evaluation index of global hydraulic stability,which can also be used in other air-conditioning systems with multiple terminals and multiple control loops.展开更多
Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat tra...Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat transfer coefficient(CHTC) on HTB.This paper proposed a new experimental method,homologous method,to obtain the inundation effect precisely.Based on the requirements of the new test method,a new test facility was designed and established.Then,the superiority of homologous method for inundation effect was investigated based on experiment result and theoretic analysis.The results showed that the homogenous method can effectively control the experimental error of inundation effect,which is less than 50% of the error of CHTC,and less than 30% of the error of the inundation effect gained by routine method.The new test facility built for the homogenous method is excellent in obtaining the accurate inundation effect of film condensation on HTB.All the result is a foundation of the theoretical development of the FCHT on HTB.展开更多
Based on experimental data,numerical simulations by turbulent air flowing across staggered tube bundle composed of twisted elliptical tube(TET)with constant tube wall temperature are conducted in present study.Paramet...Based on experimental data,numerical simulations by turbulent air flowing across staggered tube bundle composed of twisted elliptical tube(TET)with constant tube wall temperature are conducted in present study.Parametric study on the thermal-hydraulic characteristics of air crossflow in TET bundles is investigated with physical parameters and Reynolds number(Re).The results show that spiral channels created by spiral deformation of TETs have a diversion effect on the air flow,which changes the flow direction of the air near the tube wall.The air in the near wall region is a three-dimensional flow,consisting of a flow perpendicular to the normal direction of the elliptical cross section and a spiral flow along the helicoid on the downstream side and the upstream side.And the interaction of the spiral channels makes the two flows and their mixing more complicated.The excellent heat transfer performance of staggered TET bundles is confirmed by the comparison of the comprehensive heat transfer performance with that of circular tube bundles.The average Nusselt number(Nu)increases with the increase of the aspect ratio(A/B)and with the increase of Re while decreases as the twist pitch(S)increases.The average Euler number(Eu)increases as A/B increases,while it decreases as Re increases and as S increases.Due to the fact that the suitable correlations for staggered TET bundles are not reported,correlations for Nu and Eu obtained from experimental data and numerical results are presented in the multiple forms.展开更多
Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a mor...Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes.展开更多
文摘According to the year of 2009, calculated energy consumption quantity and energy consumption structure of building in Guangzhou to 2030, analyzed adjustment and approach of sustainable development and potential of energy conservation which can provide commendable technology progress in every department.
基金supported by the National Natural Science Foundation of China(Grant No.52078096)the Natural Science Foundation Joint Fund of Liaoning Province(Grant No.2023-MSBA-023)+1 种基金2023 Dalian University of Technology-Cardiff University Cooperation and Exchange Foundation Project,2023 International Exchange Foundation Project of“Co-Creation of Excellence Program”from Dalian University of Technology(Grant No.DUTIO-ZG-202307)the Key Project of DUT for International Students Studying and Researching in China:Innovation and Practice of Talent Cultivation Model in the Field of Smart Buildings for the“Belt and Road"Initiative(Grant No.1103-82120001).
文摘Building air conditioning systems(ACs)can contribute to the stable operation of power grids by participating in peak load shaving programs,but the participants need a fast and accurate zone temperature prediction model,e.g.,the detailed room thermal-resistance(RC)model,to improve peak shaving effect and avoid obvious thermal discomfort.However,when applying the detailed room RC model to multi-zone buildings,conventional studies mostly consider the heat transfer among neighboring rooms,which contributes little to the prediction accuracy improvement,but leads to complicated model structure and heavy computation.Thus,a distributed RC model is developed for multi-zone buildings in this study.Compared to conventional models,the proposed model considers the total heat transfer between the building and the air,and ignores the heat transfer among indoor air in neighboring rooms through internal walls with heavy thermal mass,thereby having comparable temperature prediction accuracy,simpler structure,and stronger robustness.Based on the model,the effectiveness of passive pre-cooling strategies in reducing the air conditioning loads during peak periods is investigated.Results indicate that the thermal insulation performance of opaque building envelope is quite important to the flexibility enhancement of air conditioning loads.With an uninsulated building envelope,passive pre-cooling is useless for the peak load shaving.In comparison,well insulated opaque building envelope enables the building thermal mass to be utilized through passive pre-cooling,which leads to the air conditioning loads during peak periods being further reduced by about 12%.
基金supported by the National Natural Science Foundation of China (Grant No.52,078,096)the Fundamental Research Funds for the Central Universities (Grant No.DUT20JC47)the open Foun-dation of the Key lab of Anhui Province Key Laboratory of Intelligent Building&Building Energy Saving (Grant No.IBES2021KF03).
文摘Variable air volume air-conditioning system(VAV system)has multiple control loops that interfered with each other,which has serious impacts on its actual operation effect.To solve this problem,the index of global hydraulic stability,which takes the physical quantity of the pipe network pressure and the air flow rate as reference,is proposed based on Graph theory,and a pipe network model for the hydraulic calculation is built.Then,the simulation study based on the actual operation data is carried out in MATLAB.The distribution of the pressure and the air flow in the pipe network is obtained,and the action interferences among adjacent terminal boxes are analyzed based on global hydraulic stability under damper position regulation strategy(DP strategy)and fan frequency regulation strategy(FF strategy).Results indicate that the FF strategy can decrease the total change distance of the damper position compared with the DP strategy,and then the fluctuation of the pressure and the air flow can be reduced.The contribution of this study is to provide an evaluation index of global hydraulic stability,which can also be used in other air-conditioning systems with multiple terminals and multiple control loops.
基金supported by the National Natural Science Foundation of China (Grant No. 51078053)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT11ZD105)
文摘Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat transfer coefficient(CHTC) on HTB.This paper proposed a new experimental method,homologous method,to obtain the inundation effect precisely.Based on the requirements of the new test method,a new test facility was designed and established.Then,the superiority of homologous method for inundation effect was investigated based on experiment result and theoretic analysis.The results showed that the homogenous method can effectively control the experimental error of inundation effect,which is less than 50% of the error of CHTC,and less than 30% of the error of the inundation effect gained by routine method.The new test facility built for the homogenous method is excellent in obtaining the accurate inundation effect of film condensation on HTB.All the result is a foundation of the theoretical development of the FCHT on HTB.
基金supported by National Natural Science Foundation of China(No.51806060,No.51876055,and No.51706061)CAS Key Laboratory of Renewable Energy(No.E029kf0401)Doctoral Research Startup Fund of Henan University of Science and Technology.
文摘Based on experimental data,numerical simulations by turbulent air flowing across staggered tube bundle composed of twisted elliptical tube(TET)with constant tube wall temperature are conducted in present study.Parametric study on the thermal-hydraulic characteristics of air crossflow in TET bundles is investigated with physical parameters and Reynolds number(Re).The results show that spiral channels created by spiral deformation of TETs have a diversion effect on the air flow,which changes the flow direction of the air near the tube wall.The air in the near wall region is a three-dimensional flow,consisting of a flow perpendicular to the normal direction of the elliptical cross section and a spiral flow along the helicoid on the downstream side and the upstream side.And the interaction of the spiral channels makes the two flows and their mixing more complicated.The excellent heat transfer performance of staggered TET bundles is confirmed by the comparison of the comprehensive heat transfer performance with that of circular tube bundles.The average Nusselt number(Nu)increases with the increase of the aspect ratio(A/B)and with the increase of Re while decreases as the twist pitch(S)increases.The average Euler number(Eu)increases as A/B increases,while it decreases as Re increases and as S increases.Due to the fact that the suitable correlations for staggered TET bundles are not reported,correlations for Nu and Eu obtained from experimental data and numerical results are presented in the multiple forms.
基金support provided by the National Key Research and Development Project of China(No.2017YFC0704100,under the title New Generation Intelligent Building Platform Techniques)Liaoning Natural Science Foundation Guidance Plan(No.20180551057)+1 种基金Dalian High-level Talent Innovation Support Program(Youth Technology Star)(No.2017RQ099)Fundamental Research Funds for the Central Universities(No.DUT20JC47)。
文摘Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes.