A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant b...A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant biostimulants(PBs)in production can reduce the application of traditional pesticides and chemical fertilizers and improvethe quality and yield of crops,which is conducive to the sustainable development of agriculture.An in-depthunderstanding of the mechanism and effect of various PBs is very important for how to apply PBs reasonablyand effectively in the practice of crop production.This paper summarizes the main classification of PBs;Thegrowth promotion mechanism of PBs was analyzed from four aspects:improving soil physical and chemical properties,enhancing crop nutrient absorption capacity,photosynthesis capacity,and abiotic stress tolerance;At thesame time,the effects of PBs application on seed germination,seedling vigor,crop yield,and quality were summarized;Finally,how to continue to explore and study the use and mechanism of PBs in the future is analyzedand prospected,to better guide the application of PBs in crop production in the future.展开更多
Naturally,resistant crop germplasms are important resources for managing the issues of agricultural product safety and environment deterioration.We found a spontaneous mutant of‘Newhall’navel orange(Citrus sinensis ...Naturally,resistant crop germplasms are important resources for managing the issues of agricultural product safety and environment deterioration.We found a spontaneous mutant of‘Newhall’navel orange(Citrus sinensis Osbeck)(MT)with broad-spectrum protections against fungal pathogens in the orchard,postharvest-storage,and artificial inoculation conditions.To understand the defense mechanism of MT fruit,we constructed a genome-scale metabolic network that integrated metabolome and transcriptome datasets.The coordinated transcriptomic and metabolic data were enriched in two sub-networks,showing the decrease in very long chain fatty acid(by 41.53%)and cuticular wax synthesis(by 81.34%),and increase in the synthesis of jasmonic acid(JA)(by 95.23%)and JA-induced metabolites such as 5-dimethylnobietin(by 28.37%)in MT.Furthermore,cytological and biochemical analyses confirmed that the response to fungal infection in MT was independent of wax deficiency and was correlated with the levels of jasmonates,and the expression of plant defensin gene PDF1.2.Results of exogenous application of MeJA and JA inhibitors such as propyl gallate proved that JA-mediated defense contributes to the strong tolerance against pathogens in MT.Our results indicated that jasmonate biosynthesis and signaling are stimulated by the fatty acid redirection of MT,and participate in the tolerance of pathogenic fungi.展开更多
Elaioplasts of citrus peel are colorless plastids which accumulate significant amounts of terpenes.However,other functions of elaioplasts have not been fully characterized to date.Here,a LC–MS/MS shotgun technology w...Elaioplasts of citrus peel are colorless plastids which accumulate significant amounts of terpenes.However,other functions of elaioplasts have not been fully characterized to date.Here,a LC–MS/MS shotgun technology was applied to identify the proteins from elaioplasts that were highly purified from young fruit peel of kumquat.A total of 655 putative plastid proteins were identified from elaioplasts according to sequence homology in silico and manual curation.Based on functional classification via Mapman,~50%of the identified proteins fall into six categories,including protein metabolism,transport,and lipid metabolism.Of note,elaioplasts contained ATP synthase and ADP,ATP carrier proteins at high abundance,indicating important roles for ATP generation and transport in elaioplast biogenesis.Additionally,a comparison of proteins between citrus chromoplast and elaioplast proteomes suggest a high level of functional conservation.However,some distinctive protein profiles were also observed in both types of plastids notably for isoprene biosynthesis in elaioplasts,and carotenoid metabolism in chromoplasts.In conclusion,this comprehensive proteomic study provides new insights into the major metabolic pathways and unique characteristics of elaioplasts and chromoplasts in citrus fruit.展开更多
Genetic transformation experiments of the different explants from Citrus grandis cv. Changshou Shatian You infected with Agrobacterium rhizogenes were carried out in darkness or in light. The optimizing culture system...Genetic transformation experiments of the different explants from Citrus grandis cv. Changshou Shatian You infected with Agrobacterium rhizogenes were carried out in darkness or in light. The optimizing culture system of Ri T-DNA transformed roots for C. grandis cv. Changshou Shatian You was constructed as follows: After the ventral wounded striations on the single activation cotyledon were inoculated by A. rhizogenes A4 (logarithmic period), they were cocultured at (25 ±2)℃ in darkness for 25-30 days; some transformed roots were generated from wounded striations of most cotyledons. The genetically transformed ratio is (83 ± 11)%. Axenic Ri T-DNA transformed roots (hairy roots) were harvested after five subcultures. Explants were activated on MT medium. The MS medium was used for subculture of transformed roots. Mass Ri T-DNA transformed roots in which the hormone was produced independently were harvested from this optimizing culture system. White, fresh Ri T-DNA transformed roots were (1.14 ±0.07) cm long, (0.73 ±0.04) mm wide, and the growth direction of transformed roots was negative geotropism.展开更多
Acaricidal activity of Boenninghausenia sessilicarpa against Panonychus cirri was tested in the laboratory. Four solvents were used to prepare crude extracts, petroleum ether, chloroform, ethyl acetate, and ethanol, a...Acaricidal activity of Boenninghausenia sessilicarpa against Panonychus cirri was tested in the laboratory. Four solvents were used to prepare crude extracts, petroleum ether, chloroform, ethyl acetate, and ethanol, among which ethanol was the most effective one. The results suggested that ethanol extracts of B. sessilicarpa had eminent acaricidal and ovicidal activities. Concentrated extracts were prepared using petroleum ether, chloroform, ethyl acetate, or distilled water as solvent. Mite mortality rates in the concentrated extracts by petroleum ether, chloroform, or distilled water were significantly lower than those by ethyl acetate. The LC50 values of eggs and female mites were 0.7639 and 1.1033 mg mL^-1, respectively. After liquid chromatography and thin layer chromatography, the concentrated extracts were separated into 14 groups of fractions and further tests for their acaricidal and ovicidal activities were conducted. Fraction 2 was found to possess higher acaricidal and ovicidal activities. The mortality of eggs and adult mites were 85.83 and 63.07%, respectively. Moreover, fraction 2 showed moderate oviposition inhibition effect (0.8795) against P. citri when the used dose was higher than 2.5 mg mL^-1展开更多
Mandarin (Citrus reticulata) is one of the most important citrus crops worldwide. Its domestication is believed to have occurred in South China, which has been one of the centers of mandarin cultivation for four mil...Mandarin (Citrus reticulata) is one of the most important citrus crops worldwide. Its domestication is believed to have occurred in South China, which has been one of the centers of mandarin cultivation for four millennia. We collected natural wild populations of mandarin around the Nanling region and cultivated landraces in the vicinity. We found that the citric acid level was dramatically reduced in cultivated mandarins. To understand genetic basis of mandarin domestication, we de novo assembled a draft genome of wild mandarin and analyzed a set of 104 citrus genomes. We found that the Mangshan mandarin is a primitive type and that two independent domestication events have occurred, resulting in two groups of cultivated mandarins (MD1 and MD2) in the North and South Nanling Mountains, respectively. Two bottlenecks and two expansions of effective population size were identified for the MD1 group of cultivated mandarins. However, in the MD2 group there was a long and continuous decrease in the population size. MD1 and MD2 mandarins showed different patterns of interspecific introgression from cultivated pummelo species. We identified a region of high divergence in an aconitate hydratase (ACO) gene involved in the regulation of citrate content, which was possibly under selection during the domestication of mandarin. This study provides concrete genetic evidence for the geographical origin of extant wild mandarin populations and sheds light on the domestication and evolutionary history of mandarin.展开更多
Arbuscular mycorrhizal(AM) symbionts are able to greatly affect soil fertility. However, the relationships between AM symbiosis development levels and citrus mycorrhizosphere soil fertility remain weakly known in fiel...Arbuscular mycorrhizal(AM) symbionts are able to greatly affect soil fertility. However, the relationships between AM symbiosis development levels and citrus mycorrhizosphere soil fertility remain weakly known in field. In our study, AM colonization, spore density, hyphal length density, and glomalin-related soil protein(GRSP) content in citrus(Robertson naval orange grafted on Citrus reticulata Blanco) orchards along an altitudinal gradient were investigated seasonally in southern China. The results showed that AM colonization and abundances of spore and hyphae fluctuated significantly in different seasons and altitudes. The highest AM colonization(83.03%) was observed in orchards at 200 m above sea level in summer, spore density(16.8 spores g-1soil) in orchards at 400 m in autumn, and hyphal length density(2.36 m g-1soil) in orchards at 600 m orchards in summer; while the lowest values(43.60%, 2.7 spores g-1soil and 0.52 m g-1soil of AM colonization, spore density, and hyphal length density, respectively) were all observed in orchards at 800 m in winter. Correlation analyses demonstrated that the soil properties such as soil organic matter,alkali-hydrolyzable N, available P, and p H were significantly(P < 0.05) positively correlated with either citrus total AM colonization or the abundances of spore and hyphae. GRSP was significantly(P < 0.05) positively correlated with soil organic matter and p H.Redundancy analysis supported that soil environmental factors such as altitude, GRSP, soil organic matter, and alkali-hydrolyzable N severely(Monte Carlo permutation tests, P = 0.002) influenced AM colonization and abundances of spore and hyphae in citrus orchards. Our data demonstrated that soil environmental factors are vital in determining AM symbiosis development in citrus orchards.展开更多
基金the National Natural Science Foundation of China(No.32001984).
文摘A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant biostimulants(PBs)in production can reduce the application of traditional pesticides and chemical fertilizers and improvethe quality and yield of crops,which is conducive to the sustainable development of agriculture.An in-depthunderstanding of the mechanism and effect of various PBs is very important for how to apply PBs reasonablyand effectively in the practice of crop production.This paper summarizes the main classification of PBs;Thegrowth promotion mechanism of PBs was analyzed from four aspects:improving soil physical and chemical properties,enhancing crop nutrient absorption capacity,photosynthesis capacity,and abiotic stress tolerance;At thesame time,the effects of PBs application on seed germination,seedling vigor,crop yield,and quality were summarized;Finally,how to continue to explore and study the use and mechanism of PBs in the future is analyzedand prospected,to better guide the application of PBs in crop production in the future.
基金This work was supported by the National Natural Science Foundation of China(No.31772368,31572176,and 31521092)the National Modern Agriculture(Citrus)Technology Systems of China(No.CARS-27)the National Science&Technology Pillar Program of China(2015BAD16B06).
文摘Naturally,resistant crop germplasms are important resources for managing the issues of agricultural product safety and environment deterioration.We found a spontaneous mutant of‘Newhall’navel orange(Citrus sinensis Osbeck)(MT)with broad-spectrum protections against fungal pathogens in the orchard,postharvest-storage,and artificial inoculation conditions.To understand the defense mechanism of MT fruit,we constructed a genome-scale metabolic network that integrated metabolome and transcriptome datasets.The coordinated transcriptomic and metabolic data were enriched in two sub-networks,showing the decrease in very long chain fatty acid(by 41.53%)and cuticular wax synthesis(by 81.34%),and increase in the synthesis of jasmonic acid(JA)(by 95.23%)and JA-induced metabolites such as 5-dimethylnobietin(by 28.37%)in MT.Furthermore,cytological and biochemical analyses confirmed that the response to fungal infection in MT was independent of wax deficiency and was correlated with the levels of jasmonates,and the expression of plant defensin gene PDF1.2.Results of exogenous application of MeJA and JA inhibitors such as propyl gallate proved that JA-mediated defense contributes to the strong tolerance against pathogens in MT.Our results indicated that jasmonate biosynthesis and signaling are stimulated by the fatty acid redirection of MT,and participate in the tolerance of pathogenic fungi.
基金This work was supported by the National Natural Science Foundation of China(NSFC,grant nos.31501739)the National Basic Research Program of China(973 project No.2013CB127105)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(No.2662015BQ034).
文摘Elaioplasts of citrus peel are colorless plastids which accumulate significant amounts of terpenes.However,other functions of elaioplasts have not been fully characterized to date.Here,a LC–MS/MS shotgun technology was applied to identify the proteins from elaioplasts that were highly purified from young fruit peel of kumquat.A total of 655 putative plastid proteins were identified from elaioplasts according to sequence homology in silico and manual curation.Based on functional classification via Mapman,~50%of the identified proteins fall into six categories,including protein metabolism,transport,and lipid metabolism.Of note,elaioplasts contained ATP synthase and ADP,ATP carrier proteins at high abundance,indicating important roles for ATP generation and transport in elaioplast biogenesis.Additionally,a comparison of proteins between citrus chromoplast and elaioplast proteomes suggest a high level of functional conservation.However,some distinctive protein profiles were also observed in both types of plastids notably for isoprene biosynthesis in elaioplasts,and carotenoid metabolism in chromoplasts.In conclusion,this comprehensive proteomic study provides new insights into the major metabolic pathways and unique characteristics of elaioplasts and chromoplasts in citrus fruit.
基金The research was supported by the Science Fund of China Post Ph.D (2003034492)Science Foundation of Chongqing Educational Committee (040216), China.
文摘Genetic transformation experiments of the different explants from Citrus grandis cv. Changshou Shatian You infected with Agrobacterium rhizogenes were carried out in darkness or in light. The optimizing culture system of Ri T-DNA transformed roots for C. grandis cv. Changshou Shatian You was constructed as follows: After the ventral wounded striations on the single activation cotyledon were inoculated by A. rhizogenes A4 (logarithmic period), they were cocultured at (25 ±2)℃ in darkness for 25-30 days; some transformed roots were generated from wounded striations of most cotyledons. The genetically transformed ratio is (83 ± 11)%. Axenic Ri T-DNA transformed roots (hairy roots) were harvested after five subcultures. Explants were activated on MT medium. The MS medium was used for subculture of transformed roots. Mass Ri T-DNA transformed roots in which the hormone was produced independently were harvested from this optimizing culture system. White, fresh Ri T-DNA transformed roots were (1.14 ±0.07) cm long, (0.73 ±0.04) mm wide, and the growth direction of transformed roots was negative geotropism.
基金supported by the Special Public Sector Research of China (nyhyzx07-057)the National Key Technology R&D Program of China(2007BAD47B04, 2008BAD92B08)
文摘Acaricidal activity of Boenninghausenia sessilicarpa against Panonychus cirri was tested in the laboratory. Four solvents were used to prepare crude extracts, petroleum ether, chloroform, ethyl acetate, and ethanol, among which ethanol was the most effective one. The results suggested that ethanol extracts of B. sessilicarpa had eminent acaricidal and ovicidal activities. Concentrated extracts were prepared using petroleum ether, chloroform, ethyl acetate, or distilled water as solvent. Mite mortality rates in the concentrated extracts by petroleum ether, chloroform, or distilled water were significantly lower than those by ethyl acetate. The LC50 values of eggs and female mites were 0.7639 and 1.1033 mg mL^-1, respectively. After liquid chromatography and thin layer chromatography, the concentrated extracts were separated into 14 groups of fractions and further tests for their acaricidal and ovicidal activities were conducted. Fraction 2 was found to possess higher acaricidal and ovicidal activities. The mortality of eggs and adult mites were 85.83 and 63.07%, respectively. Moreover, fraction 2 showed moderate oviposition inhibition effect (0.8795) against P. citri when the used dose was higher than 2.5 mg mL^-1
基金This project was supported by the fundamental research funds for the central universities (2662015PY109), and the National Natural Science Foundation of China (31572105, 31330066, and 31521092 to Q.X. and X.D.).
文摘Mandarin (Citrus reticulata) is one of the most important citrus crops worldwide. Its domestication is believed to have occurred in South China, which has been one of the centers of mandarin cultivation for four millennia. We collected natural wild populations of mandarin around the Nanling region and cultivated landraces in the vicinity. We found that the citric acid level was dramatically reduced in cultivated mandarins. To understand genetic basis of mandarin domestication, we de novo assembled a draft genome of wild mandarin and analyzed a set of 104 citrus genomes. We found that the Mangshan mandarin is a primitive type and that two independent domestication events have occurred, resulting in two groups of cultivated mandarins (MD1 and MD2) in the North and South Nanling Mountains, respectively. Two bottlenecks and two expansions of effective population size were identified for the MD1 group of cultivated mandarins. However, in the MD2 group there was a long and continuous decrease in the population size. MD1 and MD2 mandarins showed different patterns of interspecific introgression from cultivated pummelo species. We identified a region of high divergence in an aconitate hydratase (ACO) gene involved in the regulation of citrate content, which was possibly under selection during the domestication of mandarin. This study provides concrete genetic evidence for the geographical origin of extant wild mandarin populations and sheds light on the domestication and evolutionary history of mandarin.
基金supported by the China Spark Program of the Ministry of Science and Technology,China(No.2007EA760023)
文摘Arbuscular mycorrhizal(AM) symbionts are able to greatly affect soil fertility. However, the relationships between AM symbiosis development levels and citrus mycorrhizosphere soil fertility remain weakly known in field. In our study, AM colonization, spore density, hyphal length density, and glomalin-related soil protein(GRSP) content in citrus(Robertson naval orange grafted on Citrus reticulata Blanco) orchards along an altitudinal gradient were investigated seasonally in southern China. The results showed that AM colonization and abundances of spore and hyphae fluctuated significantly in different seasons and altitudes. The highest AM colonization(83.03%) was observed in orchards at 200 m above sea level in summer, spore density(16.8 spores g-1soil) in orchards at 400 m in autumn, and hyphal length density(2.36 m g-1soil) in orchards at 600 m orchards in summer; while the lowest values(43.60%, 2.7 spores g-1soil and 0.52 m g-1soil of AM colonization, spore density, and hyphal length density, respectively) were all observed in orchards at 800 m in winter. Correlation analyses demonstrated that the soil properties such as soil organic matter,alkali-hydrolyzable N, available P, and p H were significantly(P < 0.05) positively correlated with either citrus total AM colonization or the abundances of spore and hyphae. GRSP was significantly(P < 0.05) positively correlated with soil organic matter and p H.Redundancy analysis supported that soil environmental factors such as altitude, GRSP, soil organic matter, and alkali-hydrolyzable N severely(Monte Carlo permutation tests, P = 0.002) influenced AM colonization and abundances of spore and hyphae in citrus orchards. Our data demonstrated that soil environmental factors are vital in determining AM symbiosis development in citrus orchards.