This work analyzes the quality of crustal tilt and strain observations during 2014, which were acquired from 269 sets of ground tiltmeters and 212 sets of strainmeters. In terms of data quality, the water tube tiltmet...This work analyzes the quality of crustal tilt and strain observations during 2014, which were acquired from 269 sets of ground tiltmeters and 212 sets of strainmeters. In terms of data quality, the water tube tiltmeters presented the highest rate of excellent quality,approximately 91%, and the pendulum tiltmeters and ground strainmeters yielded rates of81% and 78%, respectively. This means that a total of 380 sets of instruments produced high-quality observational data suitable for scientific investigations and analyses.展开更多
An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, w...An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.展开更多
In the field investigations of the great 1976 Tangshan earthquake in China, several large subsidence areas with remarkable boundary fssures were reported as phenomena of the seismic event. Recently a re-interpretation...In the field investigations of the great 1976 Tangshan earthquake in China, several large subsidence areas with remarkable boundary fssures were reported as phenomena of the seismic event. Recently a re-interpretation of aerial photos taken immediately after the quake revealed that the areas were controlled by a giant fault of about 40 km in length; and subsidences were brought about by the movement of the fault during the shock, not being a consequence of soil liquefaction as suggested in some of the investigations. This discovery has been confirmed by the results of fine geophysical explorations carried out by the Jidong Oilfield Company, PetroChina. The newly discovered fault, named Fuzhuang-Xihe fault, is much longer than the one prevailingly accepted as the seismic fault of the Tangshan earthquake. Moreover, the former seems to be a normal fault, while the latter is regarded as a strike-slip one.展开更多
Two branches of Tangjiagou rock avalanche were triggered by Lushan earthquake in Sichuan Province,China on April 20th,2013.The rock avalanche has transported about 1500000 m3 of sandstone from the source area.Based on...Two branches of Tangjiagou rock avalanche were triggered by Lushan earthquake in Sichuan Province,China on April 20th,2013.The rock avalanche has transported about 1500000 m3 of sandstone from the source area.Based on discrete element modeling,this study simulates the deformation,failure and movement process of the rock avalanche.Under seismic loading,the mechanism and process of deformation,failure,and runout of the two branches are similar.In detail,the stress concentration occur firstly on the top of the mountain ridge,and accordingly,the tensile deformation appears.With the increase of seismic loading,the strain concentration zone extends in the forward and backward directions along the slipping surface,forming a locking segment.As a result,the slipping surface penetrates and the slide mass begin to slide down with high speed.Finally,the avalanche accumulates in the downstream and forms a small barrier lake.Modeling shows that a number of rocks on the surface exhibit patterns of horizontal throwing and vertical jumping under strong ground shaking.We suggest that the movement of the rock avalanche is a complicated process with multiple stages,including formation of the two branches,high-speed sliding,transformation into debris flows,further movement and collision,accumulation,and the final steady state.Topographic amplification effects are also revealed based on acceleration and velocity of special monitoring points.The horizontal and vertical runout distances of the surface materials are much greater than those of the internal materials.Besides,the sliding duration is also longer than that of the internal rock mass.展开更多
Measuring gas content is an essential step in estimating the commerciality of gas reserves. In this study,eight shale core samples from the Mouye-1 well were measured using a homemade patented gas desorption apparatus...Measuring gas content is an essential step in estimating the commerciality of gas reserves. In this study,eight shale core samples from the Mouye-1 well were measured using a homemade patented gas desorption apparatus to determine their gas contents. Due to the air contamination that is introduced into the desorption canister, a mathematical method was devised to correct the gas quantity and quality.Compared to the chemical compositions of desorbed gas, the chemical compositions of residual gas are somewhat different. In residual gas, carbon dioxide and nitrogen record a slight increase, and propane is first observed. This phenomenon may be related to the exposure time during the transportation of shale samples from the drilling site to the laboratory, as well as the differences in the mass, size and adsorptivity of different gas molecules. In addition to a series of conventional methods, including the USBM direct method and the Amoco Curve Fit(ACF) method, which were used here for lost gas content estimation, a Modified Curve Fit(MCF) method, based on the 'bidisperse' diffusion model, was established to estimate lost gas content. By fitting the ACF and MCF models to gas desorption data, we determined that the MCF method could reasonably describe the gas desorption data over the entire time period, whereas the ACF method failed. The failure of the ACF method to describe the gas desorption process may be related to its restrictive assumption of a single pore size within shale samples. In comparison to the indirect method, this study demonstrates that none of the three methods studied in this investigation(USBM, ACF and MCF) could individually estimate the lost gas contents of all shale samples and that the proportion of free gas relative to total gas has a significant effect on the estimation accuracy of the selected method. When the ratio of free gas to total gas is lower than 45%, the USBM method is the best for estimating the lost gas content, whereas when the ratio ranges from 45% to 75% or is more than 75%, the ACF and MCF methods, are the best options respectively.展开更多
We relocate the spatial distribution of its aftershocks. The relocation database is obtained the devastating 12 May 2008 Wenchuan earthquake and from 89 stations deployed by the China Earthquake Administration, includ...We relocate the spatial distribution of its aftershocks. The relocation database is obtained the devastating 12 May 2008 Wenchuan earthquake and from 89 stations deployed by the China Earthquake Administration, including 54 525 seismograms from 1 376 local earthquakes over Ms3.5 between 12 May 2008 and 3 August 2008. The cross-correlation technique used in this paper has greatly improved the relocation precision by giving much more accurate P-wave differential travel-time measurements than those obtained from routinely picked phase onsets. At the same time, we pick P-wave polarity observations of the Wenchuan earthquake series (hereafter referred to as WES) from 1023 stations in China and 59 IRIS (Incorporated Research Institutions of Seismology) stations. Then, employing a newly developed program CHNYTX, we obtain 83 well-determined focal mechanism solutions (hereafter referred to as FMSs). Based on spatial distribution and FMSs of the WES, we draw following conclusions: (1) The region near the main shock exhibits a buried low-angle northwest-dipping seismic zone with the main shock at its upper end and two conjugated seismic zones dipping southeast with roughly equal dip-angle; (2) The compressional directions of all kinds of FMSs of the WES are subhorizontal, which reflects the dominant stress in this area is eompressional; (3) The principal compressional direction of the regional stress around Wenchuan is roughly perpendicular to the strike of Beichuan-Yingxiu fault, while around Qingchuan it is roughly parallel to the strike of Qingehuan fault. In intermediate part of the Longmenshan area, the principal compressional direction of the stress should be in-between; (4) The possibly existed molten materials in the lower crust of Songpan-Garze terrain have small contribution to the local stress state in Longmenshan area. The listric geometries of the Longmenshan faults most probably resulted from subhorizontal compression along NW-SE direction in history.展开更多
This paper deals with the design and development of the observational system of geo-electrical resistivity on the basis of the demands for exploring the temporal variations of electrical properties of Earth media in t...This paper deals with the design and development of the observational system of geo-electrical resistivity on the basis of the demands for exploring the temporal variations of electrical properties of Earth media in the fixed points of the networks, which would be associated with the earthquake preparation. The observation system is characterized by the high accuracy in measurement, long term stability in operation and high level of rejection to the environmental interference. It consists of three main parts, configuration system measurement system, the calibration and inspection system.展开更多
Data obtained by GRACE(Gravity Recovery and Climate Experiment) have been used to invert for the seismic source parameters of megathrust earthquakes under the assumption of either uniform slip over an entire fault or ...Data obtained by GRACE(Gravity Recovery and Climate Experiment) have been used to invert for the seismic source parameters of megathrust earthquakes under the assumption of either uniform slip over an entire fault or a point-like seismic source.Herein, we further extend the inversion of GRACE long-wavelength gravity changes to heterogeneous slip distributions during the 2011 Tohoku earthquake using three fault models:(Ⅰ) a constant-strike and constant-dip fault,(Ⅱ) a variable dip fault, and(Ⅲ) a realistically varying strike fault. By removing the post-seismic signal from the time series, and taking the effect of ocean water redistribution into account, we invert for slip models I, II, and III using co-seismic gravity changes measured by GRACE, de-striped by DDK3 decorrelation filter. The total seismic moments of our slip models, with respective values of 4.9×10^(22) Nm, 5.1×10^(22) Nm, and 5.0×10^(22) Nm, are smaller than those obtained by other studies relying on GRACE data. The resulting centroids are also located at greater depths(20 km, 19.8 km,and 17.4 km, respectively). By combining onshore GPS, GPS-Acoustic, and GRACE data, we obtain a jointly inverted slip model with a seismic moment of 4.8×10^(22) Nm, which is larger than the seismic moment obtained using only the GPS displacements. We show that the slip inverted from low degree space-borne gravimetric data, which contains information at the ocean region, is affected by the strike of the arcuate trench. The space-borne gravimetric data help us constrain the source parameters of a megathrust earthquake within the frame of heterogeneous slip models.展开更多
The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark ...The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark State Magnetometer)probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.展开更多
The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carr...The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite's payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration;these include platform construction, data classification, data storage, data format, and data access and acquisition.展开更多
The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric ...The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric perturbations that can be associated with seismic activities, to better understand the generation mechanism of such perturbations. Its scientific payload can measure a broad frequency range of electromagnetic waves and some important plasma parameters. This paper is a first-hand study of unusual observations recorded by the CSES over seismic regions prior to four earthquakes with M >7.0 since the satellite's launch. CSES detectors measured irregularities near the epicenter of these four earthquakes. It is already clear that data from instruments onboard the CSES will be of significant help in studies of characteristics of ionospheric perturbations related to earthquakes and their generation mechanisms.展开更多
On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This...On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This is a rare natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.This study was built on field surveys,satellite image interpretation,the digital elevation model(DEM),engineering geological analysis and empirical regression.The purpose was to reveal the characteristics and causes of the landslide,the features and formation process of the barrier lake and the dam break flooding discharge.The results show that the volume of the landslide deposit is approximately 2.4×105 m3.The burst mode of the landslide dam is overtopping,which took only 22 minutes from the formation of the landslide dam to its overtopping.The dam-break peak flow was 1353 m3/s,and the average velocity was 2.8–3.0 m/s.This study shows that the strongly weathered rock and soil slope has low strength and high permeability under the condition of heavy rainfall,which reminds us the high risk of landslides and the importance of accurate early warning of landslides under heavy rainfalls in densely populated areas of Southeast China,as well as the severity of the disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.展开更多
Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, ...Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.展开更多
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surf...Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.展开更多
A study of the Kunlunshan earthquake of MS = 8.1 based on observed coseismic strain steps from the borehole strain monitoring network over China has been carried out with some interesting results. Firstly, many record...A study of the Kunlunshan earthquake of MS = 8.1 based on observed coseismic strain steps from the borehole strain monitoring network over China has been carried out with some interesting results. Firstly, many recordings disagree with theoretic calculation using static dislocation model. Secondly, abnormally large strain steps are ob-served at quite a few stations in the tectonically active east-northern China, while in the relatively inactive east-southern China no obvious steps are recorded. It is inferred that seismic stress triggering may significantly affect remote seismic strain field. In other words, whether remote faulting be seismically triggered or not may de-termine the pattern of local seismic strain changes. Further comparison study results of March 11, 1999 Zhangbei earthquake and November 1, 1999 Datong earthquake show that the specific pattern of seismic zones has obvious influence on seismic strain changes in the region. This supports the idea that observed abnormal strain steps might be produced by coseismicly stress-triggered local faulting.展开更多
The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides,resulting in massive loss of people’s life and property.However,integrated investigations and results regarding the landslides triggered by th...The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides,resulting in massive loss of people’s life and property.However,integrated investigations and results regarding the landslides triggered by this earthquake are rare;such situation hinders the deep understanding of these landslides such as scale,extent,and distribution.With the support of Google Earth software,this study intends to finish the seismic landslides interpretation work in the areas of Gulang earthquake(VIII-XI degree)using the artificial visual interpretation method,and further analyze the spatial distribution and impact factors of these landslides.The results show that the earthquake has triggered at least 936 landslides in the VIII-XI degree zone,with a total landslide area of 58.6 km^2.The dense area of seismic landslides is located in the middle and southern parts of the X intensity circle.Statistical analysis shows that seismic landslides is mainly controlled by factors such as elevation,slope gradient,slope direction,strata,seismic intensity,faults and rivers.The elevation of 2000-2800 m is the high-incidence interval of the landslide.The landslide density is larger with a higher slope gradient.East and west directions are the dominant sliding directions.The areas with Cretaceous and Quaternary strata are the main areas of the Gulang seismic landslides.The X intensity zone triggered the most landslides.In addition,landslides often occur in regions near rivers and faults.This paper provides a scientific reference for exploring the development regularities of landslides triggered by the 1927 Gulang earthquake and effectively mitigating the landslide disasters of the earthquake.展开更多
Landslides induced by the 2008 Wenchuan earthquake in the Longmenshan area were relatively well instrumented, which makes it possible to investigate the landslides using ground motion records. Firstly, this paper anal...Landslides induced by the 2008 Wenchuan earthquake in the Longmenshan area were relatively well instrumented, which makes it possible to investigate the landslides using ground motion records. Firstly, this paper analyzes the data from Wenchuan earthquake on both regional and local site scale. The analyses show that the Newmark accumulative displacement calculated from the ground motion recorded in a particular geological hazard zone corresponds to the hazard intensity in that zone; the larger the displacement, the more serious the geologic hazard. The calculated result also shows that the displacement is related to the Arias intensity, which represents the total energy released during the earthquake at the observation site. Secondly, this paper constructs an evaluation model of Newmark displacement calculated with Arias intensities to estimate the subsequent slope failure resulting from the earthquake. The calculated results based on the model fit well with the distribution of actual landslides, suggesting that this method is useful for hazard evaluation. Therefore, this type of model can be used for estimating regional-scale distribution of earthquake-induced landslides and their associated hazards immediately after an earthquake.展开更多
The high energetic particle package(HEPP) on-board the China Seismo-Electromagnetic Satellite(CSES) was launched on February 2, 2018. This package includes three independent detectors: HEPP-H, HEPP-L, and HEPP-X. HEPP...The high energetic particle package(HEPP) on-board the China Seismo-Electromagnetic Satellite(CSES) was launched on February 2, 2018. This package includes three independent detectors: HEPP-H, HEPP-L, and HEPP-X. HEPP-H and HEPP-L can detect energetic electrons from 100 keV to approximately 50 MeV and protons from 2 MeV to approximately 200 MeV. HEPP-X can measure solar X-rays in the energy range from 1 keV to approximately 20 keV. The objective of the HEPP payload was to provide a survey of energetic particles with high energy, pitch angle, and time resolutions in order to gain new insight into the space radiation environments of the near-Earth system. Particularly, the HEPP can provide new measurements of the magnetic storm related precipitation of electrons in the slot region, and the dynamics of radiation belts. In this paper, the HEPP scientific data sets are described and initial results are provided.The scientific data can show variations in the flux of energetic particles during magnetic storms.展开更多
Using plane dislocation theory and the seismic-wave inversion results from the Institute of Geophysics, China Earthquake Administration and the Institute of Geodesy and Geophysics, Chinese Academy of Sciences models, ...Using plane dislocation theory and the seismic-wave inversion results from the Institute of Geophysics, China Earthquake Administration and the Institute of Geodesy and Geophysics, Chinese Academy of Sciences models, the surface coseismic deformation and gravity changes caused by the 2013 Ms7.0 Lushan earthquake are simulated. The simulations of coseismic gravity change and deformation indicate that the dislocation has dip-slip characteristics. The results also show that the coseismic deformation exhibits a symmetrical, positive-and-negative distribution, with the deformation usually being less than 10 mm in the far- field but up to 140 mm in the near-field. The gravity changes are concentrated on the fault-projection area, which is greatly affected by the vertical surface deformation. The gravity change and vertical deformation in the far field are usually less than and 5 mm, respectively, but reach and 330 mm, respectively, in the near field. The simulated results agree well with the measured resuhs, which suggests a theoretical basis for the observed change in gravity before and after this earthquake.展开更多
The Heqing-Eryuan fault is an important part of the active fault system in the Northwestern Yunnan Province, China. Thus, the study on the nature, characteristics and activity history of this fault can provide not onl...The Heqing-Eryuan fault is an important part of the active fault system in the Northwestern Yunnan Province, China. Thus, the study on the nature, characteristics and activity history of this fault can provide not only the basis for seismic safety and engineering evaluation, but also the important information for the characteristics, history and patterns of the structural deformation of the southeastern margin of the Tibetan Plateau. Trench and faulted landforms investigations could provide effective paleoseismic methods to obtain the recent parameters of active faults. Using these methods, this study makes some breakthroughs on the recent activity of southeast boundary fault of the Heqing basin, middle segment of Heqing-Eryuan fault zone. Results indicate that the average vertical slip rate and left-lateral slip rate of the segment are about 0.28 mm/a and 1.8o mm/a respectively since the Late Pleistocene. The trench near the Beixi Village at the .outhea.t houndnrv fault of the lqaaing basinreveals that there have been at least three paleoearthquake events during the Holocene (8 ka BP). The vertical displacement and sinistral strike-slip distance of a single paleoearthquake are ~20 cm and -1.2 m, respectively. The estimated paleoearthquake magnitudes with Ms7.o, and the recurrence interval at 2-5 ka, as well as the latest activity time during 800- 290 ca1 yr BP, are of great significance for preventing and mitigating regional earthquake disasters.展开更多
基金supported by Special Foundation of Earthquake Science(201408006)Director Foundation of Institute of Seismology,China Earthquake Administration(201516214)
文摘This work analyzes the quality of crustal tilt and strain observations during 2014, which were acquired from 269 sets of ground tiltmeters and 212 sets of strainmeters. In terms of data quality, the water tube tiltmeters presented the highest rate of excellent quality,approximately 91%, and the pendulum tiltmeters and ground strainmeters yielded rates of81% and 78%, respectively. This means that a total of 380 sets of instruments produced high-quality observational data suitable for scientific investigations and analyses.
基金supported by National Natural Science Foundation of China(Nos.40974201 and 40774044)to J.Lei
文摘An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.
文摘In the field investigations of the great 1976 Tangshan earthquake in China, several large subsidence areas with remarkable boundary fssures were reported as phenomena of the seismic event. Recently a re-interpretation of aerial photos taken immediately after the quake revealed that the areas were controlled by a giant fault of about 40 km in length; and subsidences were brought about by the movement of the fault during the shock, not being a consequence of soil liquefaction as suggested in some of the investigations. This discovery has been confirmed by the results of fine geophysical explorations carried out by the Jidong Oilfield Company, PetroChina. The newly discovered fault, named Fuzhuang-Xihe fault, is much longer than the one prevailingly accepted as the seismic fault of the Tangshan earthquake. Moreover, the former seems to be a normal fault, while the latter is regarded as a strike-slip one.
基金supported by the NationalNatural Science Foundation of China(41402254)Department of Science and Technology of Shaanxi Province(2019ZDLSF07-0701)。
文摘Two branches of Tangjiagou rock avalanche were triggered by Lushan earthquake in Sichuan Province,China on April 20th,2013.The rock avalanche has transported about 1500000 m3 of sandstone from the source area.Based on discrete element modeling,this study simulates the deformation,failure and movement process of the rock avalanche.Under seismic loading,the mechanism and process of deformation,failure,and runout of the two branches are similar.In detail,the stress concentration occur firstly on the top of the mountain ridge,and accordingly,the tensile deformation appears.With the increase of seismic loading,the strain concentration zone extends in the forward and backward directions along the slipping surface,forming a locking segment.As a result,the slipping surface penetrates and the slide mass begin to slide down with high speed.Finally,the avalanche accumulates in the downstream and forms a small barrier lake.Modeling shows that a number of rocks on the surface exhibit patterns of horizontal throwing and vertical jumping under strong ground shaking.We suggest that the movement of the rock avalanche is a complicated process with multiple stages,including formation of the two branches,high-speed sliding,transformation into debris flows,further movement and collision,accumulation,and the final steady state.Topographic amplification effects are also revealed based on acceleration and velocity of special monitoring points.The horizontal and vertical runout distances of the surface materials are much greater than those of the internal materials.Besides,the sliding duration is also longer than that of the internal rock mass.
文摘Measuring gas content is an essential step in estimating the commerciality of gas reserves. In this study,eight shale core samples from the Mouye-1 well were measured using a homemade patented gas desorption apparatus to determine their gas contents. Due to the air contamination that is introduced into the desorption canister, a mathematical method was devised to correct the gas quantity and quality.Compared to the chemical compositions of desorbed gas, the chemical compositions of residual gas are somewhat different. In residual gas, carbon dioxide and nitrogen record a slight increase, and propane is first observed. This phenomenon may be related to the exposure time during the transportation of shale samples from the drilling site to the laboratory, as well as the differences in the mass, size and adsorptivity of different gas molecules. In addition to a series of conventional methods, including the USBM direct method and the Amoco Curve Fit(ACF) method, which were used here for lost gas content estimation, a Modified Curve Fit(MCF) method, based on the 'bidisperse' diffusion model, was established to estimate lost gas content. By fitting the ACF and MCF models to gas desorption data, we determined that the MCF method could reasonably describe the gas desorption data over the entire time period, whereas the ACF method failed. The failure of the ACF method to describe the gas desorption process may be related to its restrictive assumption of a single pore size within shale samples. In comparison to the indirect method, this study demonstrates that none of the three methods studied in this investigation(USBM, ACF and MCF) could individually estimate the lost gas contents of all shale samples and that the proportion of free gas relative to total gas has a significant effect on the estimation accuracy of the selected method. When the ratio of free gas to total gas is lower than 45%, the USBM method is the best for estimating the lost gas content, whereas when the ratio ranges from 45% to 75% or is more than 75%, the ACF and MCF methods, are the best options respectively.
基金supported by the Wenchuan Fault Scientific Drilling Program(WFSD),the Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period under grant No. 2008BAC38B02-4the National Natural Science Foundation of China under grant No. 40821062
文摘We relocate the spatial distribution of its aftershocks. The relocation database is obtained the devastating 12 May 2008 Wenchuan earthquake and from 89 stations deployed by the China Earthquake Administration, including 54 525 seismograms from 1 376 local earthquakes over Ms3.5 between 12 May 2008 and 3 August 2008. The cross-correlation technique used in this paper has greatly improved the relocation precision by giving much more accurate P-wave differential travel-time measurements than those obtained from routinely picked phase onsets. At the same time, we pick P-wave polarity observations of the Wenchuan earthquake series (hereafter referred to as WES) from 1023 stations in China and 59 IRIS (Incorporated Research Institutions of Seismology) stations. Then, employing a newly developed program CHNYTX, we obtain 83 well-determined focal mechanism solutions (hereafter referred to as FMSs). Based on spatial distribution and FMSs of the WES, we draw following conclusions: (1) The region near the main shock exhibits a buried low-angle northwest-dipping seismic zone with the main shock at its upper end and two conjugated seismic zones dipping southeast with roughly equal dip-angle; (2) The compressional directions of all kinds of FMSs of the WES are subhorizontal, which reflects the dominant stress in this area is eompressional; (3) The principal compressional direction of the regional stress around Wenchuan is roughly perpendicular to the strike of Beichuan-Yingxiu fault, while around Qingchuan it is roughly parallel to the strike of Qingehuan fault. In intermediate part of the Longmenshan area, the principal compressional direction of the stress should be in-between; (4) The possibly existed molten materials in the lower crust of Songpan-Garze terrain have small contribution to the local stress state in Longmenshan area. The listric geometries of the Longmenshan faults most probably resulted from subhorizontal compression along NW-SE direction in history.
文摘This paper deals with the design and development of the observational system of geo-electrical resistivity on the basis of the demands for exploring the temporal variations of electrical properties of Earth media in the fixed points of the networks, which would be associated with the earthquake preparation. The observation system is characterized by the high accuracy in measurement, long term stability in operation and high level of rejection to the environmental interference. It consists of three main parts, configuration system measurement system, the calibration and inspection system.
基金supported financially by the National Natural Science Foundation of China (No.41574021,41474059,41331066,41774088,and 41174063)a research grant from the Institute of Crustal Dynamics,China Earthquake Administration (No.ZDJ2017-23)+4 种基金the CAS/CAFEA International Partnership Program for Creative Research Teams (No.KZZD-EW-TZ-19)the Key Research Program of Frontier Sciences CAS (Chinese Academy of Sciences) (QYZDY-SSW-SYS003)the SKLGED foundation (SKLGED2014-1-1-E)the GOCE Italy Project (the Italian Space Agency and the European Space Agency Endorsement)the China Postdoctoral Science Foundation (No.133014)
文摘Data obtained by GRACE(Gravity Recovery and Climate Experiment) have been used to invert for the seismic source parameters of megathrust earthquakes under the assumption of either uniform slip over an entire fault or a point-like seismic source.Herein, we further extend the inversion of GRACE long-wavelength gravity changes to heterogeneous slip distributions during the 2011 Tohoku earthquake using three fault models:(Ⅰ) a constant-strike and constant-dip fault,(Ⅱ) a variable dip fault, and(Ⅲ) a realistically varying strike fault. By removing the post-seismic signal from the time series, and taking the effect of ocean water redistribution into account, we invert for slip models I, II, and III using co-seismic gravity changes measured by GRACE, de-striped by DDK3 decorrelation filter. The total seismic moments of our slip models, with respective values of 4.9×10^(22) Nm, 5.1×10^(22) Nm, and 5.0×10^(22) Nm, are smaller than those obtained by other studies relying on GRACE data. The resulting centroids are also located at greater depths(20 km, 19.8 km,and 17.4 km, respectively). By combining onshore GPS, GPS-Acoustic, and GRACE data, we obtain a jointly inverted slip model with a seismic moment of 4.8×10^(22) Nm, which is larger than the seismic moment obtained using only the GPS displacements. We show that the slip inverted from low degree space-borne gravimetric data, which contains information at the ocean region, is affected by the strike of the arcuate trench. The space-borne gravimetric data help us constrain the source parameters of a megathrust earthquake within the frame of heterogeneous slip models.
基金supported by National Key Research and Development Program of China from MOST (2016YFB0501503)
文摘The High Precision Magnetometer(HPM) on board the China Seismo-Electromagnetic Satellite(CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM(Fluxgate Magnetometer) and CDSM(Coupled Dark State Magnetometer)probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.
基金supported by the Civil Space Research project (ZH1 data validation: Ionospheric observatory theory)NFSC grant 41574139 and 41874174
文摘The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite's payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration;these include platform construction, data classification, data storage, data format, and data access and acquisition.
基金supported by the National Natural Science Foundation of China (41404058)
文摘The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric perturbations that can be associated with seismic activities, to better understand the generation mechanism of such perturbations. Its scientific payload can measure a broad frequency range of electromagnetic waves and some important plasma parameters. This paper is a first-hand study of unusual observations recorded by the CSES over seismic regions prior to four earthquakes with M >7.0 since the satellite's launch. CSES detectors measured irregularities near the epicenter of these four earthquakes. It is already clear that data from instruments onboard the CSES will be of significant help in studies of characteristics of ionospheric perturbations related to earthquakes and their generation mechanisms.
基金supported by the Natural Science Research Project of the Colleges and Universities in Anhui Province(KJ2020ZD34)the National Natural Science Foundation of China(41807267 and 42077259).
文摘On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This is a rare natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.This study was built on field surveys,satellite image interpretation,the digital elevation model(DEM),engineering geological analysis and empirical regression.The purpose was to reveal the characteristics and causes of the landslide,the features and formation process of the barrier lake and the dam break flooding discharge.The results show that the volume of the landslide deposit is approximately 2.4×105 m3.The burst mode of the landslide dam is overtopping,which took only 22 minutes from the formation of the landslide dam to its overtopping.The dam-break peak flow was 1353 m3/s,and the average velocity was 2.8–3.0 m/s.This study shows that the strongly weathered rock and soil slope has low strength and high permeability under the condition of heavy rainfall,which reminds us the high risk of landslides and the importance of accurate early warning of landslides under heavy rainfalls in densely populated areas of Southeast China,as well as the severity of the disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.
基金supported by the National Natural Science Foundation of China(41204058)the Running Foundation of the Gravity Network Center of China(201301008)
文摘Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.
基金Joint Seismological Science Foundation of China (No. 201017).
文摘Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.
基金National Natural Science Foundation of China (40374011), Joint Seismological Foundation of China (1040037) and Investigating Active Faults in Major Cities Program.
文摘A study of the Kunlunshan earthquake of MS = 8.1 based on observed coseismic strain steps from the borehole strain monitoring network over China has been carried out with some interesting results. Firstly, many recordings disagree with theoretic calculation using static dislocation model. Secondly, abnormally large strain steps are ob-served at quite a few stations in the tectonically active east-northern China, while in the relatively inactive east-southern China no obvious steps are recorded. It is inferred that seismic stress triggering may significantly affect remote seismic strain field. In other words, whether remote faulting be seismically triggered or not may de-termine the pattern of local seismic strain changes. Further comparison study results of March 11, 1999 Zhangbei earthquake and November 1, 1999 Datong earthquake show that the specific pattern of seismic zones has obvious influence on seismic strain changes in the region. This supports the idea that observed abnormal strain steps might be produced by coseismicly stress-triggered local faulting.
基金sponsored by the the National key Research and Development Program of China(2018FYC1504703)Basic Scientific Fund of the Institute of Geology,China Earthquake Administration(IGCEA1604)the National Natural Science Foundation of China(41661144037)。
文摘The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides,resulting in massive loss of people’s life and property.However,integrated investigations and results regarding the landslides triggered by this earthquake are rare;such situation hinders the deep understanding of these landslides such as scale,extent,and distribution.With the support of Google Earth software,this study intends to finish the seismic landslides interpretation work in the areas of Gulang earthquake(VIII-XI degree)using the artificial visual interpretation method,and further analyze the spatial distribution and impact factors of these landslides.The results show that the earthquake has triggered at least 936 landslides in the VIII-XI degree zone,with a total landslide area of 58.6 km^2.The dense area of seismic landslides is located in the middle and southern parts of the X intensity circle.Statistical analysis shows that seismic landslides is mainly controlled by factors such as elevation,slope gradient,slope direction,strata,seismic intensity,faults and rivers.The elevation of 2000-2800 m is the high-incidence interval of the landslide.The landslide density is larger with a higher slope gradient.East and west directions are the dominant sliding directions.The areas with Cretaceous and Quaternary strata are the main areas of the Gulang seismic landslides.The X intensity zone triggered the most landslides.In addition,landslides often occur in regions near rivers and faults.This paper provides a scientific reference for exploring the development regularities of landslides triggered by the 1927 Gulang earthquake and effectively mitigating the landslide disasters of the earthquake.
基金supported by Institute of Crustal Dynamics,China Earthquake Administration(No.ZDJ2010-28)the National Natural Science Foundation of China(No.40872209)
文摘Landslides induced by the 2008 Wenchuan earthquake in the Longmenshan area were relatively well instrumented, which makes it possible to investigate the landslides using ground motion records. Firstly, this paper analyzes the data from Wenchuan earthquake on both regional and local site scale. The analyses show that the Newmark accumulative displacement calculated from the ground motion recorded in a particular geological hazard zone corresponds to the hazard intensity in that zone; the larger the displacement, the more serious the geologic hazard. The calculated result also shows that the displacement is related to the Arias intensity, which represents the total energy released during the earthquake at the observation site. Secondly, this paper constructs an evaluation model of Newmark displacement calculated with Arias intensities to estimate the subsequent slope failure resulting from the earthquake. The calculated results based on the model fit well with the distribution of actual landslides, suggesting that this method is useful for hazard evaluation. Therefore, this type of model can be used for estimating regional-scale distribution of earthquake-induced landslides and their associated hazards immediately after an earthquake.
基金supported by a research grant from the Institute of Crustal Dynamics, China Earthquake Administration (No. ZDJ2017-20)
文摘The high energetic particle package(HEPP) on-board the China Seismo-Electromagnetic Satellite(CSES) was launched on February 2, 2018. This package includes three independent detectors: HEPP-H, HEPP-L, and HEPP-X. HEPP-H and HEPP-L can detect energetic electrons from 100 keV to approximately 50 MeV and protons from 2 MeV to approximately 200 MeV. HEPP-X can measure solar X-rays in the energy range from 1 keV to approximately 20 keV. The objective of the HEPP payload was to provide a survey of energetic particles with high energy, pitch angle, and time resolutions in order to gain new insight into the space radiation environments of the near-Earth system. Particularly, the HEPP can provide new measurements of the magnetic storm related precipitation of electrons in the slot region, and the dynamics of radiation belts. In this paper, the HEPP scientific data sets are described and initial results are provided.The scientific data can show variations in the flux of energetic particles during magnetic storms.
基金supported by the National Natural Science Foundation of China(41104049)the Seismic Industry Research Project(201008001)the Earthquake Tracking Task of China Earthquake Administration(2013020211)
文摘Using plane dislocation theory and the seismic-wave inversion results from the Institute of Geophysics, China Earthquake Administration and the Institute of Geodesy and Geophysics, Chinese Academy of Sciences models, the surface coseismic deformation and gravity changes caused by the 2013 Ms7.0 Lushan earthquake are simulated. The simulations of coseismic gravity change and deformation indicate that the dislocation has dip-slip characteristics. The results also show that the coseismic deformation exhibits a symmetrical, positive-and-negative distribution, with the deformation usually being less than 10 mm in the far- field but up to 140 mm in the near-field. The gravity changes are concentrated on the fault-projection area, which is greatly affected by the vertical surface deformation. The gravity change and vertical deformation in the far field are usually less than and 5 mm, respectively, but reach and 330 mm, respectively, in the near field. The simulated results agree well with the measured resuhs, which suggests a theoretical basis for the observed change in gravity before and after this earthquake.
基金supported by the National Natural Science Foundation of China (Grant No. 41171001, 41471002, 41402184)the 1:50000 Active Fault Mapping of HeqingEryuan fault (Grant No. 201108001-20)a research grant from the Institute of Crustal Dynamics, China Earthquake Administration (Grant No. ZDJ2013-17)
文摘The Heqing-Eryuan fault is an important part of the active fault system in the Northwestern Yunnan Province, China. Thus, the study on the nature, characteristics and activity history of this fault can provide not only the basis for seismic safety and engineering evaluation, but also the important information for the characteristics, history and patterns of the structural deformation of the southeastern margin of the Tibetan Plateau. Trench and faulted landforms investigations could provide effective paleoseismic methods to obtain the recent parameters of active faults. Using these methods, this study makes some breakthroughs on the recent activity of southeast boundary fault of the Heqing basin, middle segment of Heqing-Eryuan fault zone. Results indicate that the average vertical slip rate and left-lateral slip rate of the segment are about 0.28 mm/a and 1.8o mm/a respectively since the Late Pleistocene. The trench near the Beixi Village at the .outhea.t houndnrv fault of the lqaaing basinreveals that there have been at least three paleoearthquake events during the Holocene (8 ka BP). The vertical displacement and sinistral strike-slip distance of a single paleoearthquake are ~20 cm and -1.2 m, respectively. The estimated paleoearthquake magnitudes with Ms7.o, and the recurrence interval at 2-5 ka, as well as the latest activity time during 800- 290 ca1 yr BP, are of great significance for preventing and mitigating regional earthquake disasters.