Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide,especially winter wheat in the Huang-Huai-Hai Plain of China,and both the occurrence and severity of such events are likely to...Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide,especially winter wheat in the Huang-Huai-Hai Plain of China,and both the occurrence and severity of such events are likely to increase with global climate change.To investigate the recovery of physiological functions and yield formation using a new noncommercial chemical regulator(NCR)following dry-hot wind stress,we conducted a three-year field experiment(2018-2021)with sprayed treatments of tap water(control),monopotassium phosphate(CKP),NCR at both the jointing and flowering stages(CFS),and NCR only at the jointing stage(FSJ)or flowering stage(FSF).The leaf physiology,biomass accumulation and translocation,grain-filling process,and yield components in winter wheat were assessed.Among the single spraying treatments,the FSJ treatment was beneficial for the accumulation of dry matter before anthesis,as well as larger increases in the maximum grain-filling rate and mean grain-filling rate.The FSF treatment performed better in maintaining a high relative chlorophyll content as indicated by the SPAD value,and a low rate of excised leaf water loss in flag leaves,promoting dry matter accumulation and the contribution to grain after anthesis,prolonging the duration of grain filling,and causing the period until the maximum grain-filling rate reached earlier.The CFS treatment was better than any other treatments in relieving the effects of dry-hot wind.The exogenous NCR treatments significantly increased grain yields by 12.45-18.20% in 2018-2019,8.89-13.82% in 2019-2020,and 8.10-9.00% in 2020-2021.The conventional measure of the CKP treatment only increased grain yield by 6.69% in 2020-2021.The CFS treatment had the greatest mitigating effect on yield loss under dry-hot wind stress,followed by the FSF and FSJ treatments,and the CKP treatment only had a minimal effect.In summary,the CFS treatment could be used as the main chemical control measure for wheat stress resistance and yield stability in areas with a high incidence of dry-hot wind.This treatment can effectively regulate green retention and the water status of leaves,promote dry matter accumulation and efficient translocation,improve the grain-filling process,and ultimately reduce yield losses.展开更多
In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca^2+ localiza...In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca^2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca^2+ concentration of mesophyll ceils was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 rain after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca^2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.展开更多
Hybrid millet Zhang and its parental cultivars were studied for their potassium (K) uptake and accumulation characteristics and related physiological mechanisms. Hydroponic culture was performed with two K levels (i.e...Hybrid millet Zhang and its parental cultivars were studied for their potassium (K) uptake and accumulation characteristics and related physiological mechanisms. Hydroponic culture was performed with two K levels (i.e., high and low) set up. At high K level, hybrid millet showed heterobeltiosis in K accumulation and leaf K content, and it also had higher H+-ATPase activity, respiration rate, root oxidant activity and root K+ influx rate than its parental cultivars. All these lay the physiological foundation of heterosis for potassium uptake of hybrid millet. At low K level, the hybrid millet had a lower H+-ATPase activity and a higher K efflux rate than its parental cultivars, thus heterobeltiosis in K accumulation or leaf K content was not observed. Therefore, high level K fertilizer application is recommended for hybrid millet cultivation as it is favorable for hybrid millet to display heterosis in K uptake and K accumulation.展开更多
基金supported by the National Key Research and Development Program of China(2019YFE0197100)the earmarked fund for China Agriculture Research System(CARS-03-01A)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences。
文摘Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide,especially winter wheat in the Huang-Huai-Hai Plain of China,and both the occurrence and severity of such events are likely to increase with global climate change.To investigate the recovery of physiological functions and yield formation using a new noncommercial chemical regulator(NCR)following dry-hot wind stress,we conducted a three-year field experiment(2018-2021)with sprayed treatments of tap water(control),monopotassium phosphate(CKP),NCR at both the jointing and flowering stages(CFS),and NCR only at the jointing stage(FSJ)or flowering stage(FSF).The leaf physiology,biomass accumulation and translocation,grain-filling process,and yield components in winter wheat were assessed.Among the single spraying treatments,the FSJ treatment was beneficial for the accumulation of dry matter before anthesis,as well as larger increases in the maximum grain-filling rate and mean grain-filling rate.The FSF treatment performed better in maintaining a high relative chlorophyll content as indicated by the SPAD value,and a low rate of excised leaf water loss in flag leaves,promoting dry matter accumulation and the contribution to grain after anthesis,prolonging the duration of grain filling,and causing the period until the maximum grain-filling rate reached earlier.The CFS treatment was better than any other treatments in relieving the effects of dry-hot wind.The exogenous NCR treatments significantly increased grain yields by 12.45-18.20% in 2018-2019,8.89-13.82% in 2019-2020,and 8.10-9.00% in 2020-2021.The conventional measure of the CKP treatment only increased grain yield by 6.69% in 2020-2021.The CFS treatment had the greatest mitigating effect on yield loss under dry-hot wind stress,followed by the FSF and FSJ treatments,and the CKP treatment only had a minimal effect.In summary,the CFS treatment could be used as the main chemical control measure for wheat stress resistance and yield stability in areas with a high incidence of dry-hot wind.This treatment can effectively regulate green retention and the water status of leaves,promote dry matter accumulation and efficient translocation,improve the grain-filling process,and ultimately reduce yield losses.
基金supported by the Natural Science Foundation of Hebei Province,China(C2007000994)the National Key Technology R&D Program,China(2007BAD69B01).
文摘In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca^2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca^2+ concentration of mesophyll ceils was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 rain after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca^2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.
文摘Hybrid millet Zhang and its parental cultivars were studied for their potassium (K) uptake and accumulation characteristics and related physiological mechanisms. Hydroponic culture was performed with two K levels (i.e., high and low) set up. At high K level, hybrid millet showed heterobeltiosis in K accumulation and leaf K content, and it also had higher H+-ATPase activity, respiration rate, root oxidant activity and root K+ influx rate than its parental cultivars. All these lay the physiological foundation of heterosis for potassium uptake of hybrid millet. At low K level, the hybrid millet had a lower H+-ATPase activity and a higher K efflux rate than its parental cultivars, thus heterobeltiosis in K accumulation or leaf K content was not observed. Therefore, high level K fertilizer application is recommended for hybrid millet cultivation as it is favorable for hybrid millet to display heterosis in K uptake and K accumulation.