Friction stir welding between 5052 aluminum alloy plates with a thickness of 2 mm was performed. The tool for welding was rotated at speeds ranging from 500 to 3000 r/min under a constant traverse speed of 100 mm/min....Friction stir welding between 5052 aluminum alloy plates with a thickness of 2 mm was performed. The tool for welding was rotated at speeds ranging from 500 to 3000 r/min under a constant traverse speed of 100 mm/min. The results show that at all tool rotation speeds, defect-free welds are successfully obtained. Especially at 1000, 2000 and 3000 r/min, the welds exhibit very smooth surface morphologies. At 500, 1000, and 2000 r/min, onion ring structure is clearly observed in the friction-stir-welded zone (SZ). In addition, the onion ring structure region becomes wider as the tool rotation speed is increased. The gain size in the SZ is smaller than that in the base metal, and is decreased with a decrease of the tool rotation speed. In all tool rotation speeds, the SZ exhibits higher average hardness than the base metal. Especially at 500 r/min, the average hardness of the SZ reaches a level about 33% greater than that of the base metal. At 500, 1 000 and 2 000 r/min, the tensile strength of the friction stir welded (FSWed) plates is similar to that of the base metal (about 204 MPa). The elongation of the FSWed plates is lower than that of the base metal (about 22%). However, it is noticeable that the maximum elongation of about 21% is obtained at 1 000 r/min.展开更多
AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of ...AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of 500 r/min.The plunge depth was ranged from 1.6 mm to 2.2 mm.The tool plunge speed did not make a remarkable effect on the surface appearance and macro-structure of the FSJed zone.The average hardness of the FSJed zone was greater than or equal to that of the base metal.However,there was no remarkable tendency in the average hardness change of the FSJed zone in spite of the variation in the tool plunge speed and tool plunge depth.The increase of the tool plunge depth resulted in the increase of the tensile shear load.However,the change of the tool plunge speed did not lead to the remarkable variation in the tensile shear load of the FSJed plates.It was noteworthy that the FSJed plate exhibited the highest tensile shear load of about 4.0 kN.展开更多
The dynamic behavior of a microhollow cathode sustained discharge with split third electrodes is experimentally investigated. The sustained discharge swells isotropically in the presence of a small amount of argon gas...The dynamic behavior of a microhollow cathode sustained discharge with split third electrodes is experimentally investigated. The sustained discharge swells isotropically in the presence of a small amount of argon gas flow that is not clearly detectable with a conventional single third electrode. At high flow rates, the sustained discharge transitions to a fast-moving constricted discharge with an are shape. The modified discharge structure causes a shift in current distribution over the third electrodes, and the current peak location varies linearly with the flow rate over a certain flow range. Such linear behavior may be applied to in situ flow velocity measurement.展开更多
文摘Friction stir welding between 5052 aluminum alloy plates with a thickness of 2 mm was performed. The tool for welding was rotated at speeds ranging from 500 to 3000 r/min under a constant traverse speed of 100 mm/min. The results show that at all tool rotation speeds, defect-free welds are successfully obtained. Especially at 1000, 2000 and 3000 r/min, the welds exhibit very smooth surface morphologies. At 500, 1000, and 2000 r/min, onion ring structure is clearly observed in the friction-stir-welded zone (SZ). In addition, the onion ring structure region becomes wider as the tool rotation speed is increased. The gain size in the SZ is smaller than that in the base metal, and is decreased with a decrease of the tool rotation speed. In all tool rotation speeds, the SZ exhibits higher average hardness than the base metal. Especially at 500 r/min, the average hardness of the SZ reaches a level about 33% greater than that of the base metal. At 500, 1 000 and 2 000 r/min, the tensile strength of the friction stir welded (FSWed) plates is similar to that of the base metal (about 204 MPa). The elongation of the FSWed plates is lower than that of the base metal (about 22%). However, it is noticeable that the maximum elongation of about 21% is obtained at 1 000 r/min.
基金financially supported by the Ministry of Education,Science Technology(MEST)and National Research Foundation of Korea(NRF)through the Human Resource Training Project for Regional Innovationby the development program of local science park funded by the ULSAN Metropolitan City and the Ministry of Education,Science and Technology(MEST)
文摘AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of 500 r/min.The plunge depth was ranged from 1.6 mm to 2.2 mm.The tool plunge speed did not make a remarkable effect on the surface appearance and macro-structure of the FSJed zone.The average hardness of the FSJed zone was greater than or equal to that of the base metal.However,there was no remarkable tendency in the average hardness change of the FSJed zone in spite of the variation in the tool plunge speed and tool plunge depth.The increase of the tool plunge depth resulted in the increase of the tensile shear load.However,the change of the tool plunge speed did not lead to the remarkable variation in the tensile shear load of the FSJed plates.It was noteworthy that the FSJed plate exhibited the highest tensile shear load of about 4.0 kN.
文摘The dynamic behavior of a microhollow cathode sustained discharge with split third electrodes is experimentally investigated. The sustained discharge swells isotropically in the presence of a small amount of argon gas flow that is not clearly detectable with a conventional single third electrode. At high flow rates, the sustained discharge transitions to a fast-moving constricted discharge with an are shape. The modified discharge structure causes a shift in current distribution over the third electrodes, and the current peak location varies linearly with the flow rate over a certain flow range. Such linear behavior may be applied to in situ flow velocity measurement.