期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Responses of soil stoichiometry and soil enzyme activities in the different distance around opencast coal mine of the Hulun Buir Grassland of China
1
作者 Yinli Bi Nan Guo +2 位作者 Yanxu Zhang Xianglei Li Ziheng Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期221-231,共11页
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis... The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes. 展开更多
关键词 Opencast coal mine Soil stoichiometry Soil enzyme activities DISTANCE GRASSLAND
下载PDF
不同林龄樟子松人工林径向生长对气候及地下水位变化的响应 被引量:10
2
作者 张晓 吴梦婉 +5 位作者 SeMyung Kwon 潘磊磊 韩辉 杨晓晖 刘艳书 时忠杰 《生态学报》 CAS CSCD 北大核心 2022年第16期6827-6837,共11页
全球气候变化导致森林生态系统的结构与功能发生改变,甚至出现树木死亡与林分衰退的现象,研究林分生长对气候变化尤其是干旱事件的响应有助于预测未来气候变化下生态系统的稳定性。以辽宁章古台5个林龄的樟子松人工林为研究对象,分析了... 全球气候变化导致森林生态系统的结构与功能发生改变,甚至出现树木死亡与林分衰退的现象,研究林分生长对气候变化尤其是干旱事件的响应有助于预测未来气候变化下生态系统的稳定性。以辽宁章古台5个林龄的樟子松人工林为研究对象,分析了树木径向生长对气候因子与地下水位的响应,结果表明:秋季气温,尤其是最低气温显著影响樟子松林的生长(44年生林分除外);低林龄樟子松林(36、39年)生长与当年夏季及生长季内的降水显著正相关,而高林龄樟子松林(52年)生长则与当年春季尤其是当年2月与5月降水显著正相关;36、39、52年生樟子松人工林年表与当年夏季的Palmer干旱指数(PDSI)显著正相关,44、58年生樟子松人工林年表则与地下水位显著正相关。应对早期干旱(即1997年)时,樟子松人工林表现为随林龄增加,其抵抗力增加而恢复力降低;在随后的两个干旱事件中,高林龄樟子松林的抵抗力不再明显高于低林龄,可能是由于地下水位显著降低影响根系吸水;受累积干旱的影响,所有林龄樟子松人工林对2007—2008干旱事件的弹性力均小于1,径向生长量明显降低。地下水位是影响不同林龄樟子松人工林生长及对干旱抵抗力的重要因子,考虑地下水位有助于进一步提升森林生态系统对气候变化响应研究的准确性。 展开更多
关键词 樟子松人工林 树木年轮 气候因子 地下水位 弹性
下载PDF
Arbuscular mycorrhizal symbiosis facilitates apricot seedling(Prunus sibirica L.)growth and photosynthesis in northwest China 被引量:1
3
作者 Yinli Bi Linlin Xie +3 位作者 Zhigang Wang Kun Wang Wenwen Liu Wenwu Xie 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期473-482,共10页
Arbuscular mycorrhizal(AM)fungi can successfully enhance photosynthesis(P_(n))and plants growth in agricultural or grassland ecosystems.However,how the symbionts affect species restoration in sunlight-intensive areas ... Arbuscular mycorrhizal(AM)fungi can successfully enhance photosynthesis(P_(n))and plants growth in agricultural or grassland ecosystems.However,how the symbionts affect species restoration in sunlight-intensive areas remains largely unexplored.Therefore,this study’s objective was to assess the effect of AM fungi on apricot seedling physiology,within a specific time period,in northwest China.In 2010,an experimental field was established in Shaanxi Province,northwest China.The experimental treatments included two AM fungi inoculation levels(0 or 100 g of AM fungal inoculum per seedling),three shade levels(1900,1100,and 550µmol m^(−2) s^(−1)),and three ages(1,3,and 5 years)of transplantation.We examined growth,Pn,and morphological indicators of apricot(Prunus sibirica L.)seedling performances in 2011,2013,and 2015.The colonization rate in mycorrhizal seedlings with similar amounts of shade is higher than the corresponding controls.The mycorrhizal seedling biomass is significantly higher than the corresponding non-mycorrhizal seedling biomass.Generally,P_(n),stomatal conductance(G_(s)),transpiration rate(T_(r)),and water use efficiency are also significantly higher in the mycorrhizal seedlings.Moreover,mycorrhizal seedlings with light shade(LS)have the highest Pn.WUE is increased in non-mycorrhizal seedlings because of the reduction in T_(r),while T_(r) is increased in mycorrhizal seedlings with shade.There is a significant increase in the N,P,and K fractions detected in roots compared with shoots.This means that LS had apparent benefits for mycorrhizal seedlings.Our results also indicate that AM fungi,combined with LS,exert a positive effect on apricot behavior. 展开更多
关键词 Apricot seedlings Arbuscular mycorrhizal symbiosis Plant growth Light shade Photosynthesis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部